skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2308743

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The PlasmaKristall-4 (PK-4) experiment on the International Space Station allows for the study of the three-dimensional interaction between plasma and dust particles. Previous simulations of the PK-4 environment have discovered fast moving ionization waves in the dc discharge [Hartmann et al., Plasma Sources Sci. Technol. 29, 115014 (2020)]. These ionization waves vary the plasma parameters by up to an order of magnitude, which may affect the mechanisms responsible for the self-organization of chains seen in the PK-4 experiment. Here, we adapt a molecular dynamics simulation to employ temporally varying plasma conditions in order to investigate the effect on the dust charging and electrostatic potential. In order to describe the differences between the average of the plasma conditions and the time-varying plasma condition, we present a model to reproduce the interaction that takes into account the negative potential from the dust grain and the positive potential from the ion wake. 
    more » « less
  2. Interacting torsions are examined within a two-dimensional monolayer crystal suspended in an argon complex plasma for 1–10 W discharge powers and pressures of 135–155 mTorr. Two torsions embedded in a lattice are shown to amplify the kinetic energy and range of motion of particles located between the torsions to nearly three times that observed in single torsion systems. It is also shown that multiple torsions can interact via amplified particle energy when separated by up to 14 interparticle distances (Δ). The torsion separation distance also showed a positive linear trend with power and a slightly positive correlation with the pressure. This amplification of energy is possible due to the fact that multiple torsions in a lattice increase the interparticle distance of the lattice by 16% more than single torsion systems, leading to additional freedom of motion in the lattice plane. These combined findings show that multiple torsions heat the lattice differently depending on their separation from the other torsion. The midpoint particles between torsions absorb the majority of energy from the two torsions, and energy addition at the midpoint is nonlinear. The addition of more torsions to the lattice may lead to melting of the plasma crystal. 
    more » « less
  3. Dust grains have been used as minimally invasive probes to determine plasma parameters including the plasma density, temperature, and electric field in a plasma discharge. However, the dust grains in a plasma generate local potential disturbances due to the collection of charge and the subsequent electrostatic interactions between the dust and charged plasma particles. Dust grains in close proximity to one another exhibit interesting non-reciprocal interactions and self-organize into structures such as one-dimensional filamentary chains, two-dimensional “zigzags,” and three-dimensional helices, among others. The formation of these structures suggests that although the dust grains may be less invasive than traditional plasma probes, the disturbance to the local plasma environment introduced by dust grains is non-trivial. Commonly used analytic forms of the electric potential describing complex plasmas have failed to resolve the near-dust region, and as a result are insufficient to provide insight about the formation of complex dust structures. Here, we use an N-body simulation to compute the electric potential from ion densities near various dust grain configurations. We provide an alternative description to the standard analytic model for the electric potential of dust and ion wakes based on a Gaussian shaped cloud of ions. The electric potential obtained from simulations is used to identify minimum energy configurations for two and three dust grains. It is further demonstrated that the minimum potential region identified for N dust grains and their associated ion wakes does not predict the minimum-energy configuration of N + 1 dust grains. 
    more » « less