Self-organization of dust grains into stable filamentary dust structures (or “chains”) largely depends on dynamic interactions between individual charged dust grains and complex electric potential arising from the distribution of charges within a local plasma environment. Recent studies have shown that the positive column of the gas discharge plasma in the Plasmakristall-4 (PK-4) experiment at the International Space Station supports the presence of fast-moving ionization waves, which lead to variations of plasma parameters by up to an order of magnitude from the average background values. The highly variable environment resulting from ionization waves may have interesting implications for the dynamics and self-organization of dust particles, particularly concerning the formation and stability of dust chains. Here, we investigate the electric potential surrounding dust chains in the PK-4 experiment by employing a molecular dynamics model of the dust and ions with boundary conditions supplied by a particle-in-cell with Monte Carlo collision simulation of the ionization waves. The model is used to examine the effects of the plasma conditions within different regions of the ionization wave and compare the resulting dust structure to that obtained by employing the time-averaged plasma conditions. The comparison between simulated dust chains and experimental data from the PK-4 experiment shows that the time-averaged plasma conditions do not accurately reproduce observed results for dust behavior, indicating that more careful treatment of plasma conditions in the presence of ionization waves is required. It is further shown that commonly used analytic forms of the electric potential do not accurately describe the electric potential near charged dust grains under these plasma conditions.
more »
« less
Interacting dust grains in complex plasmas: Ion wake formation and the electric potential
Dust grains have been used as minimally invasive probes to determine plasma parameters including the plasma density, temperature, and electric field in a plasma discharge. However, the dust grains in a plasma generate local potential disturbances due to the collection of charge and the subsequent electrostatic interactions between the dust and charged plasma particles. Dust grains in close proximity to one another exhibit interesting non-reciprocal interactions and self-organize into structures such as one-dimensional filamentary chains, two-dimensional “zigzags,” and three-dimensional helices, among others. The formation of these structures suggests that although the dust grains may be less invasive than traditional plasma probes, the disturbance to the local plasma environment introduced by dust grains is non-trivial. Commonly used analytic forms of the electric potential describing complex plasmas have failed to resolve the near-dust region, and as a result are insufficient to provide insight about the formation of complex dust structures. Here, we use an N-body simulation to compute the electric potential from ion densities near various dust grain configurations. We provide an alternative description to the standard analytic model for the electric potential of dust and ion wakes based on a Gaussian shaped cloud of ions. The electric potential obtained from simulations is used to identify minimum energy configurations for two and three dust grains. It is further demonstrated that the minimum potential region identified for N dust grains and their associated ion wakes does not predict the minimum-energy configuration of N + 1 dust grains.
more »
« less
- Award ID(s):
- 2308743
- PAR ID:
- 10591947
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Physics of Plasmas
- Volume:
- 31
- Issue:
- 7
- ISSN:
- 1070-664X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The microgravity environment of the Plasmakristall-4 experiment on the International Space Station provides a laboratory for exploring plasma-mediated interactions among charged dust grains in fully three-dimensional space. Away from the strong influence of Earth's gravity, the dust grains can levitate in the bulk of the plasma, where they have been observed to form extended filamentary structures aligned with the discharge tube axis. These structures can be used as a macroscopic analogue for other self-organizing systems, including electrorheological fluids and liquid crystals, and the success of the analogy depends on a thorough understanding of the mechanisms guiding the dust interaction potential. Here we present the results from molecular dynamics simulations of the ion flow past isolated dust chains within the dust cloud and the dust cloud macrostructure. Although dust grains are known to respond on the millisecond timescale, analysis reveals that periodic variations of plasma conditions on the microsecond timescale significantly affect dust structure formation. In addition to the expected formation of filamentary dust chains in the dust cloud macrostructure, dust grains in a large cloud are also observed to organize into ordered positions on the surface of nested cylinders, in agreement with experimental observations.more » « less
-
An interesting aspect of complex plasma is its ability to self-organize into a variety of structural configurations and undergo transitions between these states. A striking phenomenon is the isotropic-to-string transition observed in electrorheological complex plasma under the influence of a symmetric ion wake field. Such transitions have been investigated using the Plasma Kristall-4 (PK-4) microgravity laboratory on the International Space Station. Recent experiments and numerical simulations have shown that, under PK-4-relevant discharge conditions, the seemingly homogeneous direct current discharge column is highly inhomogeneous, with large axial electric field oscillations associated with ionization waves occurring on microsecond time scales. A multi-scale numerical model of the dust–plasma interactions is employed to investigate the role of the electric field in the charge of individual dust grains, the ion wake field and the order of string-like structures. Results are compared with those for dust strings formed in similar conditions in the PK-4 experiment.more » « less
-
A molecular dynamics simulation of ion flow past dust grains is used to investigate the interaction between a pair of charged dust particles and streaming ions. The charging and dynamics of the grains are coupled and derived from the ion–dust interactions, allowing for detailed analysis of the ion wakefield structure and wakefield-mediated interaction as the dust particles change position. When a downstream grain oscillates vertically within the wake, it decharges by up to 30% as it approaches the upstream grain and then recharges as it recedes. There is an apparent hysteresis in charging depending on whether the grain is approaching or receding from a region of higher ion density. Maps of the ion-mediated dust–dust interaction force show that the radial extent of the wake region, which provides an attractive restoring force on the downstream particle, increases as the ion flow velocity decreases, though the restoring effect becomes weaker. As also shown in recent numerical results, there is no net attractive vertical force between the two grains. Instead, the reduced ion drag on the downstream particle allows it to “draft” in the wakefield of the upstream particle.more » « less
-
null (Ed.)The excitation of low frequency dust acoustic (or dust density) waves in a dusty plasma can be driven by the flow of ions relative to dust. We consider the nonlinear development of the ion–dust streaming instability in a highly collisional plasma, where the ion and dust collision frequencies are a significant fraction of their corresponding plasma frequencies. This collisional parameter regime may be relevant to dusty plasma experiments under microgravity or ground-based conditions with high gas pressure. One-dimensional particle-in-cell simulations are presented, which take into account collisions of ions and dust with neutrals, and a background electric field that drives the ion flow. Ion flow speeds of the order of a few times thermal are considered. Waveforms of the dust density are found to have broad troughs and sharp crests in the nonlinear phase. The results are compared with the nonlinear development of the ion–dust streaming instability in a plasma with low collisionality.more » « less