skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2308817

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Block polyethers comprised of poly(propylene oxide) (PPO) and poly(ethylene oxide) (PEG or PEO) segments form the basis of ABA‐type PEO‐b‐PPO‐b‐PEO poloxamer materials. The inverse architecture with an internal hydrophilic PEO segment flanked by hydrophobic blocks can be difficult to prepare with control of architecture by use of traditional anionic polymerization. These oxyanionic polymerizations are plagued by chain‐transfer‐to‐monomer side reactions that occur with substituted epoxides such as propylene oxide (PO). Herein, we report a new method for the preparation of block polymers through a controlled polymerization involving a N‐Al Lewis adduct catalyst and an aluminum alkoxide macroinitiator. The Lewis pair catalyst was able to chain‐extend commercial PEO macroinitiators to prepare di‐, tri‐, and pentablock polyethers with low dispersity and reasonable monomer tolerance. Chain extension was confirmed using size exclusion chromatography and diffusion ordered nuclear magnetic resonance spectroscopy. The resulting block polymers were additionally analyzed with small‐angle X‐ray scattering to correlate the morphology to molecular architecture.

     
    more » « less
  2. Abstract

    An extremely rapid process for self‐assembling well‐ordered, nano, and microparticle monolayers via a novel aerosolized method is presented. The novel technique can reach monolayer self‐assembly rates as high as 268 cm2min−1from a single aerosolizing source and methods to reach faster monolayer self‐assembly rates are outlined. A new physical mechanism describing the self‐assembly process is presented and new insights enabling high‐efficiency nanoparticle monolayer self‐assembly are developed. In addition, well‐ordered monolayer arrays from particles of various sizes, surface functionality, and materials are fabricated. This new technique enables a 93× increase in monolayer self‐assembly rates compared to the current state of the art and has the potential to provide an extremely low‐cost option for submicron nanomanufacturing.

     
    more » « less
  3. Free, publicly-accessible full text available April 22, 2025
  4. Free, publicly-accessible full text available April 11, 2025
  5. Free, publicly-accessible full text available March 20, 2025
  6. The interplay of charge, spin, lattice, and orbital degrees of freedom in correlated materials often leads to rich and exotic properties. Recent studies have brought new perspectives to bosonic collective excitations in correlated materials. For example, inelastic neutron scattering experiments revealed non-trivial band topology for magnons and spin–orbit excitons (SOEs) in a quantum magnet CoTiO3(CTO). Here, we report phonon properties resulting from a combination of strong spin–orbit coupling, large crystal field splitting, and trigonal distortion in CTO. Specifically, the interaction between SOEs and phonons endows chirality to twoEgphonon modes and leads to large phonon magnetic moments observed in magneto-Raman spectra. The remarkably strong magneto-phononic effect originates from the hybridization of SOEs and phonons due to their close energy proximity. While chiral phonons have been associated with electronic topology in some materials, our work suggests opportunities may arise by exploring chiral phonons coupled to topological bosons.

     
    more » « less
    Free, publicly-accessible full text available March 12, 2025
  7. Free, publicly-accessible full text available February 28, 2025
  8. Free, publicly-accessible full text available February 14, 2025
  9. Free, publicly-accessible full text available February 14, 2025
  10. Free, publicly-accessible full text available January 18, 2025