skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2308999

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We describe an inexpensive and accessible instructional setup that explores particle trapping with a planar linear ion trap. The planar trap is constructed using standard printed circuit board manufacturing and is designed to trap macroscopic charged particles in air. Trapping, shuttling, and splitting are demonstrated to students using these particles, which are visible to the naked eye. Students control trap voltages and can compare properties of particle motion with an analytic model of the trap using a computer vision program for particle tracking. Learning outcomes include understanding the design considerations for planar AC traps, mechanisms underpinning particle ejection, the physics of micromotion, and methods of data analysis using standard computer vision libraries. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. We investigate the structural properties and melting behaviors of two-dimensional ion crystals in an RF trap, focusing on the effects of ion temperature and trap potential symmetry. We identify distinct crystal structures that form under varying trapping conditions and temperatures through experimental observations and theoretical analyses. As the temperature increases or the trap potential becomes more symmetric, we observe a transition from a lattice arrangement to elongated ring-like formations aligned along the trap axes. Our experimental and theoretical efforts enhance our understanding of phase transitions in low-dimensional, confined systems, offering insights into the controlled formation of quantum crystals for applications in quantum simulations and many-body physics. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026