Abstract Low-pressure nonthermal flowing plasmas are widely used for the gas-phase synthesis of nanoparticles and quantum dots of materials that are difficult or impractical to synthesize using other techniques. To date, the impact of temporary electrostatic particle trapping in these plasmas has not been recognized, a process that may be leveraged to control particle properties. Here, we present experimental and computational evidence that, during their growth in the plasma, sub-10 nm silicon particles become temporarily confined in an electrostatic trap in radio-frequency excited plasmas until they grow to a size at which the increasing drag force imparted by the flowing gas entrains the particles, carrying them out of the trap. We demonstrate that this trapping enables the size filtering of the synthesized particles, leading to highly monodisperse particle sizes, as well as the electrostatic focusing of the particles onto the reactor centerline. Understanding of the mechanisms and utilization of such particle trapping will enable the design of plasma processes with improved size control and the ability to grow heterostructured nanoparticles.
more »
« less
This content will become publicly available on July 1, 2026
An accessible planar charged particle trap for experiential learning in quantum technologies
We describe an inexpensive and accessible instructional setup that explores particle trapping with a planar linear ion trap. The planar trap is constructed using standard printed circuit board manufacturing and is designed to trap macroscopic charged particles in air. Trapping, shuttling, and splitting are demonstrated to students using these particles, which are visible to the naked eye. Students control trap voltages and can compare properties of particle motion with an analytic model of the trap using a computer vision program for particle tracking. Learning outcomes include understanding the design considerations for planar AC traps, mechanisms underpinning particle ejection, the physics of micromotion, and methods of data analysis using standard computer vision libraries.
more »
« less
- Award ID(s):
- 2308999
- PAR ID:
- 10625111
- Publisher / Repository:
- AIP
- Date Published:
- Journal Name:
- American Journal of Physics
- Volume:
- 93
- Issue:
- 7
- ISSN:
- 0002-9505
- Page Range / eLocation ID:
- 581 to 588
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Flow-based manipulation of particles is an essential tool for studying soft materials, but prior work has nearly exclusively relied on using two-dimensional (2D) flows generated in planar microfluidic geometries. In this work, we demonstrate 3D trapping and manipulation of freely suspended particles, droplets, and giant unilamellar vesicles in 3D flow fields using automated flow control. Three-dimensional flow fields including uniaxial extension and biaxial extension are generated in 3D-printed fluidic devices combined with active feedback control for particle manipulation in 3D. Flow fields are characterized using particle tracking velocimetry complemented by finite-element simulations for all flow geometries. Single colloidal particles (3.4 μm diameter) are confined in low viscosity solvent (1.0 mPa s) near the stagnation points of uniaxial and biaxial extensional flow for long times (≥10 min) using active feedback control. Trap stiffness is experimentally determined by analyzing the power spectral density of particle position fluctuations. We further demonstrate precise manipulation of colloidal particles along user-defined trajectories in three dimensions using automated flow control. Newtonian liquid droplets and GUVs are trapped and deformed in precisely controlled uniaxial and biaxial extensional flows, which is a new demonstration for 3D flow fields. Overall, this work extends flow-based manipulation of particles and droplets to three dimensions, thereby enabling quantitative analysis of colloids and soft materials in complex nonequilibrium flows.more » « less
-
This paper presents the mixing, trapping, and ejection of a single microparticle based on an acoustic tweezers. Finite Element Model (FEM) simulation, along with analytical modeling, is used to study the selectivity of particles based on size and material properties. The acoustic tweezers is optimized to have a single trapping zone, where particles are trapped due to acoustic radiation force (which is calculated for particle sizes exceeding the Rayleigh approximation). The tweezers is experimentally shown to lift microparticles from the tweezers surface, selectively trap a single particle based on size and material acoustic properties, and then eject it upwards for collection. All these are obtained with negligible heat generation.more » « less
-
In this paper, we discuss a technique for selectively loading a particle into a magneto-gravitational trap using the sublimation of camphor to release particles from a tungsten probe tip directly into the trapping region. This sublimation-activated release (SAR) loading technique makes use of micropositioners with tungsten probe tips, as well as the relatively fast rate of sublimation of camphor at room temperature, to selectively load particles having diameters ranging from 8 to 100 μm or more. The advantages of this method include its ability to selectively load unique particles or particles in limited supply, its low loss compared to alternative techniques, the low speed of the particle when released, and the versatility of its design, which allows for loading into traps with complex geometries. SAR is demonstrated here by loading a particle into a magneto-gravitational trap, but the technique could also be applicable to other levitated optomechanical systems.more » « less
-
In this Note, we describe a test rig for optimizing the trapping parameters of optical trap displays. This rig allows targeted experimentation on software, hardware, and environmental variables. These variables affect the success and robustness of particle trapping. We demonstrate the operation of the rig in a handful of example experiments while achieving an average standard error of less than 1% and an accuracy of over 98% at a reduced size, user overhead, and cost, allowing for rapid development of optical trap display research.more » « less
An official website of the United States government
