skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2309029

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Within the past two decades, covalent adaptable networks (CANs) have emerged as a novel class of dynamically crosslinked polymers, combining the benefits of thermosets and thermoplastics. Although some CANs with charged side chains have been reported, CANs with negatively charged backbones remain very limited. The integration of permanent charge into the backbones upon their formation could open up important new applications. Here, we introduce a series of aliphatic spiroborate‐linked ionic covalent adaptable networks (ICANs), representing a new category of dynamic ionomer thermosets. These ICANs were synthesized using a catalyst‐free, scalable, and environment‐friendly method. Incorporating lithium or sodium as counter cations in these networks yielded promising ion conductivity without the need of plasticizers. The dynamic nature of the spiroborate linkages in these materials allows for rapid reprocessing and recycling under moderate conditions. Furthermore, their potential as flexible solid‐state electrolytes is demonstrated in a device that maintained robust conducting performance under extreme physical deformation, coupled with effective self‐healing properties. This research opens new possibilities for future development of dynamic ionomer thermosets and their potential applications in flexible electronic devices. 
    more » « less
    Free, publicly-accessible full text available April 17, 2026
  2. Abstract Charge density waves are emergent quantum states that spontaneously reduce crystal symmetry, drive metal-insulator transitions, and precede superconductivity. In low-dimensions, distinct quantum states arise, however, thermal fluctuations and external disorder destroy long-range order. Here we stabilize ordered two-dimensional (2D) charge density waves through endotaxial synthesis of confined monolayers of 1T-TaS2. Specifically, an ordered incommensurate charge density wave (oIC-CDW) is realized in 2D with dramatically enhanced amplitude and resistivity. By enhancing CDW order, the hexatic nature of charge density waves becomes observable. Upon heating via in-situ TEM, the CDW continuously melts in a reversible hexatic process wherein topological defects form in the charge density wave. From these results, new regimes of the CDW phase diagram for 1T-TaS2are derived and consistent with the predicted emergence of vestigial quantum order. 
    more » « less
  3. Abstract Metamaterials are emerging as an unconventional platform to perform computing abstractions in physical systems by processing environmental stimuli into information. While computation functions have been demonstrated in mechanical systems, they rely on compliant mechanisms to achieve predefined states, which impose inherent design restrictions that limit their miniaturization, deployment, reconfigurability, and functionality. Here, a metamaterial system is described based on responsive magnetoactive Janus particle (MAJP) swarms with multiple programmable functions. MAJPs are designed with tunable structure and properties in mind, that is, encoded swarming behavior and fully reversible switching mechanisms, to enable programmable dynamic display, non‐volatile and semi‐volatile memory, Boolean logic, and information encryption functions in soft, wearable devices. MAJPs and their unique swarming behavior open new functions for the design of multifunctional and reconfigurable display devices, and constitute a promising building block to develop the next generation of soft physical computing devices, with growing applications in security, defense, anti‐counterfeiting, camouflage, soft robotics, and human‐robot interaction. 
    more » « less
  4. Synopsis Climate change is accelerating the increase of temperatures across the planet and resulting in the warming of oceans. Ocean warming threatens the survival of many aquatic species, including squids, and has introduced physiological, behavioral, and developmental changes, as well as physical changes in their biological materials composition, structure, and properties. Here, we characterize and analyze how the structure, morphology, and mechanical properties of European common squid Loligo vulgaris sucker ring teeth (SRT) are affected by temperature. SRT are predatory teethed structures located inside the suction cups of squids that are used to capture prey and are composed of semicrystalline structural proteins with a high modulus (GPa-range). We observed here that this biological material reversibly softens with temperature, undergoing a glass transition at ∼35°C, to a MPa-range modulus. We analyzed the SRT protein nanostructures as a function of temperature, as well as microscale and macroscale morphological changes, to understand their impact in the material properties. The results suggested that even small deviations from their habitat temperatures can result in significant softening of the material (up to 40% in modulus loss). Temperature changes following recent global climate trends and predictions might affect environmental adaptation in squid species and pose emerging survival challenges to adapt to increasing ocean temperatures. 
    more » « less
  5. Magnetic microrobots are attractive tools for operation in confined spaces due to their small size and untethered wireless operation, particularly in biomedical and environmental applications. Over years of development, many microrobot fabrication methods have been developed; however, they typically require costly specialized physical vapor deposition (PVD) vacuum instrumentation and present homogeneity and conformality coating problems (especially in complex 3D structures). Herein, a solution‐based polydopamine (PDA)‐assisted electroless deposition method is developed to deposit a superparamagnetic nickel thin film on microrobots. The multilayered functional film design comprises PDA as an adhesive primer and reducing agent, silver nanoclusters as catalysts, and a nickel magnetic top film, all deposited in a batch solution‐based process on glass and 3D‐printed polymer substrates. This multilayer magnetic coating is implemented and demonstrated in three magnetic microrobot archetypes, including arbitrarily‐shaped active particles, microrollers, and helical swimming microrobots, each using distinct actuation working mechanisms. Due to the material‐independent interfacial adhesive properties of PDA, this multilayer functionalization strategy can open up new magnetic microrobot fabrication schemes with a broad compatibility with materials and structures (including complex 3D‐printed polymer microstructures) and without the need for and limitations of PVD coating approaches. 
    more » « less
    Free, publicly-accessible full text available January 30, 2026
  6. Aquatic insects have developed versatile locomotion mechanisms that have served as a source of inspiration for decades in the development of small‐scale swimming robots. However, despite recent advances in the field, efficient, untethered, and integrated powering, actuation, and control of small‐scale robots remains a challenge due to the out‐of‐equilibrium and dissipative nature of the driving physical and chemical phenomena. Here, we have designed small‐scale, bioinspired aquatic locomotors with programmable deterministic trajectories that integrate self‐propelled chemical motors and photoresponsive shape‐morphing structures. A Marangoni motor system is developed integrating structural protein networks that self‐regulate the release of chemical fuel with photochemical liquid crystal network (LCN) actuators that change their shape and deform in and out of the surface of water. While the diffusion of fuel from the motor system regulates the propulsion, the dissipative photochemical deformation of LCNs provides locomotors with control over the directionality of motion at the air‐water interface. This approach gives access to five different but interchangeable modes of locomotion within a single swimming robot via morphing of the soft structure. The proposed design, which mimics the mechanisms of surface gliding and posture change of semiaquatic insects such as water treaders, offers solutions for autonomous swimming soft robots via untethered and orthogonal power and control. 
    more » « less