skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2309048

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. NA (Ed.)
    Free-energy perturbation simulations transform residues of phospholamban into alanine (e.g.Leu44to Ala44). Free-energy calculations provide insights into the formation of a hetero-dimeric membrane transport complex. 
    more » « less
  2. Brine shrimp (Artemia) are the only animals to thrive at sodium concentrations above 4 M. Salt excretion is powered by the Na+,K+-ATPase (NKA), a heterodimeric (αβ) pump that usually exports 3Na+in exchange for 2 K+per hydrolyzed ATP.Artemiaexpress several NKA catalytic α-subunit subtypes. High-salinity adaptation increases abundance of α2KK, an isoform that contains two lysines (Lys308 and Lys758 in transmembrane segments TM4 and TM5, respectively) at positions where canonical NKAs have asparagines (Xenopusα1’s Asn333 and Asn785). Using de novo transcriptome assembly and qPCR, we found thatArtemiaexpress two salinity-independent canonical α subunits (α1NNand α3NN), as well as two β variants, in addition to the salinity-controlled α2KK. These β subunits permitted heterologous expression of the α2KKpump and determination of its CryoEM structure in a closed, ion-free conformation, showing Lys758 residing within the ion-binding cavity. We used electrophysiology to characterize the function of α2KKpumps and compared it to that ofXenopusα1 (and its α2KK-mimicking single- and double-lysine substitutions). The double substitution N333K/N785K confers α2KK-like characteristics toXenopusα1, and mutant cycle analysis reveals energetic coupling between these two residues, illustrating how α2KK’s Lys308 helps to maintain high affinity for external K+when Lys758 occupies an ion-binding site. By measuring uptake under voltage clamp of the K+-congener86Rb+, we prove that double-lysine-substituted pumps transport 2Na+and 1 K+per catalytic cycle. Our results show how the two lysines contribute to generate a pump with reduced stoichiometry allowingArtemiato maintain steeper Na+gradients in hypersaline environments. 
    more » « less