skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2309219

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Lidar and radar observations of persistent atmospheric wave activity in the Antarctic atmosphere motivate investigation of generation of acoustic‐gravity waves (AGWs) by vibrations of ice shelves and exploiting their possible ionospheric manifestations as a source of information about the ice shelves' conditions and stability. A mathematical model of the waves radiated by vibrations of a finite area of the lower boundary of the atmosphere is developed in this paper by extending to AGWs an efficient, numerically exact approach that was originally developed in seismology and underwater acoustics. The model represents three‐dimensional wave fields as Fourier integrals of numerical or analytical solutions of a one‐dimensional wave equation and accounts for the source directionality, AGW refraction and diffraction, and the wind‐induced anisotropy of wave dissipation. Application of the model to the generation of atmospheric waves in Antarctica by free vibrations of the Ross Ice Shelf reveals a complex three‐dimensional structure of the AGW field and elucidates the impact of various environmental factors on the wave field. The intricate variation of the wave amplitude with altitude and in the horizontal plane is shaped by the spatial spectrum of the ice surface vibrations and the temperature and wind velocity stratification from the troposphere to the mesosphere. It is found that the waves due to the low‐order modes of the free oscillations of the Ross Ice Shelf, which have periods of the order of several hours, can transport energy to the middle and upper atmosphere in a wide range of directions from near‐horizontal to near‐vertical. 
    more » « less
  2. Abstract The main subject of this study is the low‐frequency (with the periods longer than 2 hr) wave processes in the coupled regional system of the Ross Ice Shelf (RIS), the Ross Sea and the atmosphere above them. We investigate possible causal relationships between the wave activity in the three media using a unique set of geophysical instruments: a hydrophone measuring pressure variations on the seafloor, a network of seismometers measuring vertical displacements of the RIS surface, and a Dynasonde system measuring wave characteristics at the ionospheric altitudes. We present an extension of the previously introduced theoretical model of the coupled resonance vibrations of the RIS that quantifies the connection between the ocean tide and the resonance vibrations of the RIS. The ocean tide is confirmed as the most significant source of excitation of the resonances. Analysis of average power spectra in year‐long data sets reveals multiple harmonics of the tide (eight) detected by the RIS seismometers while only three are detected by the seafloor sensor. This may represent a confirmation of the effect of resonance‐related broadband amplification predicted by the model. Several peaks in the spectrum of RIS vibrations have periods different from the periods of nearby tidal constituents and may be associated with broad‐scale resonance RIS vibrations. Resonances may play a role in maintaining the coupled atmosphere‐ocean wave activity. Our results reveal a statistically significant correlation between the spectra of the vertical displacements of the RIS and the spectra of the atmospheric waves. 
    more » « less