skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Atmospheric Wave Radiation by Vibrations of an Ice Shelf
Abstract Lidar and radar observations of persistent atmospheric wave activity in the Antarctic atmosphere motivate investigation of generation of acoustic‐gravity waves (AGWs) by vibrations of ice shelves and exploiting their possible ionospheric manifestations as a source of information about the ice shelves' conditions and stability. A mathematical model of the waves radiated by vibrations of a finite area of the lower boundary of the atmosphere is developed in this paper by extending to AGWs an efficient, numerically exact approach that was originally developed in seismology and underwater acoustics. The model represents three‐dimensional wave fields as Fourier integrals of numerical or analytical solutions of a one‐dimensional wave equation and accounts for the source directionality, AGW refraction and diffraction, and the wind‐induced anisotropy of wave dissipation. Application of the model to the generation of atmospheric waves in Antarctica by free vibrations of the Ross Ice Shelf reveals a complex three‐dimensional structure of the AGW field and elucidates the impact of various environmental factors on the wave field. The intricate variation of the wave amplitude with altitude and in the horizontal plane is shaped by the spatial spectrum of the ice surface vibrations and the temperature and wind velocity stratification from the troposphere to the mesosphere. It is found that the waves due to the low‐order modes of the free oscillations of the Ross Ice Shelf, which have periods of the order of several hours, can transport energy to the middle and upper atmosphere in a wide range of directions from near‐horizontal to near‐vertical.  more » « less
Award ID(s):
2309219 1643119
PAR ID:
10473551
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
128
Issue:
22
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A part of the Southern Ocean, the Ross Sea, together with the Ross Ice Shelf and the atmosphere over the region represent a coupled system with respect to the low-frequency (with the periods longer than 1 hour) wave processes observed in the three media. We study interconnections between them using a unique combination of geophysical sensors: hydrophones measuring pressure variations on the bottom of the open ocean, seismographs measuring vertical displacements of the surface of the Ross Ice Shelf, and the Jang Bogo Dynasonde system measuring wave parameters at the altitudes of the lower thermosphere. Analysis of a year-long data sets from Ross Ice Shelf-based instruments reveals presence in their average power spectra of the peaks in the 2-11 hours period range that may be associated with the low-order resonance vibrations of the system. More harmonics of the 24 hour tide (seven) are detected by the RIS seismographs compared to the sea floor sensor (where only two are clearly visible). This may be a consequence of the RIS resonance-related broadband amplification effect predicted by our model. There are several peaks in the RIS vibration spectrum (T = 8.37, 8.23, 6.3 and 6.12 hours) that are not detected by the hydrophone and may be directly related to RIS resonances. The prominent T = 25.81 hour peak is a likely candidate for the sub-inertial RIS resonance. The periods of lower RIS resonance modes predicted by our simple model and the observed spectral peaks are in the same general band. This is the first direct observation of the resonance effects in vibrations of the Ross Ice Shelf. Our results demonstrate the key role of the resonances of the Ross Ice Shelf in maintaining the wave activity in the entire coupled system. We suggest that the ocean tide is a major source of excitation of the Ross Ice Shelf’s resonances. The ice shelf vibrations may also be supported by the energy transfer from wind, swell, and infragravity wave energy that couples with the ice shelf. Overlapping 6-month-long data sets reveal a significant linear correlation between the spectra of the vertical shifts of the Ross Ice Shelf and of the thermospheric waves with the periods of about 2.1, 3.7, and 11.1 hours. This result corroborates earlier lidar observations of persistent atmospheric wave activity over McMurdo. We propose a theory that quantifies the nexus between the ocean tide and the resonance vibrations of the Ross Ice Shelf. It complements the theoretical model of the process of generating the atmospheric waves by the resonance vibrations of the Ross Ice Shelf published by us earlier. 
    more » « less
  2. Flexure and extension of ice shelves in response to incident ocean surface gravity waves have been linked to iceberg calving, rift growth, and even disintegration of ice shelves. Most modeling studies utilize a plate bending model for the ice, focusing exclusively on flexural gravity waves. Ross Ice shelf seismic data shows not only flexural gravity waves, with dominantly vertical displacements, but also extensional Lamb waves, which propagate much faster with dominantly horizontal displacements. Our objective is to model the full-wave response of ice shelves, including ocean compressibility, ice elasticity, and gravity. Our model is a 2D vertical cross-section of the ice shelf and sub-shelf ocean cavity. We quantify the frequency-dependent excitation of flexural gravity and extensional Lamb waves and provide a quantitative theory for extensional Lamb wave generation by the horizontal force imparted by pressure changes on the vertical ice shelf edge exerted by gravity waves. Our model predicts a horizontal to vertical displacement ratio that increases with decreasing frequency, with ratio equal to unity at ~0.001 Hz. Furthermore, in the very long period band (<0.003 Hz), tilt from flexural gravity waves provides an order of magnitude larger contribution to seismometer horizontal components than horizontal displacements from extensional Lamb waves. 
    more » « less
  3. null (Ed.)
    Abstract Ice shelves play an important role in buttressing land ice from reaching the sea, thus restraining the rate of grounded ice loss. Long-period gravity-wave impacts excite vibrations in ice shelves that can expand pre-existing fractures and trigger iceberg calving. To investigate the spatial amplitude variability and propagation characteristics of these vibrations, a 34-station broadband seismic array was deployed on the Ross Ice Shelf (RIS) from November 2014 to November 2016. Two types of ice-shelf plate waves were identified with beamforming: flexural-gravity waves and extensional Lamb waves. Below 20 mHz, flexural-gravity waves dominate coherent signals across the array and propagate landward from the ice front at close to shallow-water gravity-wave speeds (~70 m s −1 ). In the 20–100 mHz band, extensional Lamb waves dominate and propagate at phase speeds ~3 km s −1 . Flexural-gravity and extensional Lamb waves were also observed by a 5-station broadband seismic array deployed on the Pine Island Glacier (PIG) ice shelf from January 2012 to December 2013, with flexural wave energy, also detected at the PIG in the 20–100 mHz band. Considering the ubiquitous presence of storm activity in the Southern Ocean and the similar observations at both the RIS and the PIG ice shelves, it is likely that most, if not all, West Antarctic ice shelves are subjected to similar gravity-wave excitation. 
    more » « less
  4. ABSTRACT. Ice shelves play an important role in buttressing land ice from reaching the sea, thus restrain- ing the rate of grounded ice loss. Long-period gravity-wave impacts excite vibrations in ice shelves that can expand pre-existing fractures and trigger iceberg calving. To investigate the spatial amplitude vari- ability and propagation characteristics of these vibrations, a 34-station broadband seismic array was deployed on the Ross Ice Shelf (RIS) from November 2014 to November 2016. Two types of ice-shelf plate waves were identified with beamforming: flexural-gravity waves and extensional Lamb waves. Below 20 mHz, flexural-gravity waves dominate coherent signals across the array and propagate land- ward from the ice front at close to shallow-water gravity-wave speeds (∼70 m s−1). In the 20–100 mHz band, extensional Lamb waves dominate and propagate at phase speeds ∼3 km s−1. Flexural- gravity and extensional Lamb waves were also observed by a 5-station broadband seismic array deployed on the Pine Island Glacier (PIG) ice shelf from January 2012 to December 2013, with flexural wave energy, also detected at the PIG in the 20–100 mHz band. Considering the ubiquitous presence of storm activity in the Southern Ocean and the similar observations at both the RIS and the PIG ice shelves, it is likely that most, if not all, West Antarctic ice shelves are subjected to similar gravity- wave excitation. 
    more » « less
  5. Atmospheric gravity waves (AGWs) are among the important energy and momentum transfer mechanisms from the troposphere to the middle and upper atmosphere. Despite their understood importance in governing the structure and dynamics of these regions, mesospheric AGWs remain poorly measured globally, and largely unconstrained in numerical models. Since late 2011, the Suomi National Polar-orbiting Partnership (NPP) Visible/Infrared Imaging Radiometer Suite (VIIRS) day–night band (DNB) has observed global AGWs near the mesopause by virtue of its sensitivity to weak emissions of the OH* Meinel bands. The wave features, detectable at 0.75 km spatial resolution across its 3000 km imagery swath, are often confused by the upwelling emission of city lights and clouds reflecting downwelling nightglow. The Ionosphere, Mesosphere, upper Atmosphere and Plasmasphere (IMAP)/ Visible and near-Infrared Spectral Imager (VISI) O2 band, an independent measure of the AGW structures in nightglow based on the International Space Station (ISS) during 2012–2015, contains much less noise from the lower atmosphere. However, VISI offers much coarser resolution of 14–16 km and a narrower swath width of 600 km. Here, we present preliminary results of comparisons between VIIRS/DNB and VISI observations of AGWs, focusing on several concentric AGW events excited by the thunderstorms over Eastern Asia in August 2013. The comparisons point toward suggested improvements for future spaceborne airglow sensor designs targeting AGWs. 
    more » « less