skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2309249

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this article, we study the spectral volume (SV) methods for scalar hyperbolic conservation laws with a class of subdivision points under the Petrov–Galerkin framework. Due to the strong connection between the DG method and the SV method with the appropriate choice of the subdivision points, it is natural to analyze the SV method in the Galerkin form and derive the analogous theoretical results as in the DG method. This article considers a class of SV methods, whose subdivision points are the zeros of a specific polynomial with a parameter in it. Properties of the piecewise constant functions under this subdivision, including the orthogonality between the trial solution space and test function space, are provided. With the aid of these properties, we are able to derive the energy stability, optimal a priori error estimates of SV methods with arbitrary high order accuracy. We also study the superconvergence of the numerical solution with the correction function technique, and show the order of superconvergence would be different with different choices of the subdivision points. In the numerical experiments, by choosing different parameters in the SV method, the theoretical findings are confirmed by the numerical results. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  2. Abstract In this paper, we develop a high-order well-balanced discontinuous Galerkin method for hyperbolic balance laws based on the Gauss-Lobatto quadrature rules. Important applications of the method include preserving the non-hydrostatic equilibria of shallow water equations with non-flat bottom topography and Euler equations in gravitational fields. The well-balanced property is achieved through two essential components. First, the source term is reformulated in a flux-gradient form in the local reference equilibrium state to mimic the true flux gradient in the balance laws. Consequently, the source term integral is discretized using the same approach as the flux integral at Gauss-Lobatto quadrature points, ensuring that the source term is exactly balanced by the flux in equilibrium states. Our method differs from existing well-balanced DG methods for shallow water equations with non-hydrostatic equilibria, particularly in the aspect that it does not require the decomposition of the source term integral. The effectiveness of our method is demonstrated through ample numerical tests. 
    more » « less
  3. In this paper, we propose a local discontinuous Galerkin (LDG) method for the Novikov equation that contains cubic nonlinear high-order derivatives. Flux correction techniques are used to ensure the stability of the numerical scheme. The H 1 H^1 -norm stability of the general solution and the error estimate for smooth solutions without using any priori assumptions are presented. Numerical examples demonstrate the accuracy and capability of the LDG method for solving the Novikov equation. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  4. Free, publicly-accessible full text available June 1, 2026
  5. Free, publicly-accessible full text available June 1, 2026
  6. Free, publicly-accessible full text available June 1, 2026
  7. Free, publicly-accessible full text available May 1, 2026
  8. Free, publicly-accessible full text available April 30, 2026
  9. Free, publicly-accessible full text available April 1, 2026
  10. Free, publicly-accessible full text available February 1, 2026