Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Neural signal recording and optical stimulation using implantable devices have become a ubiquitous method to treat brain disorders, yet there lie some shortcomings, such as size, weight, and functionalities of the implants. This work presents a commercial off-the-shelf (COTS) component-based miniaturized wireless optogenetic headstage with simultaneous optical stimulation and electrophysiological recording for freely moving rats. The system includes a battery-based neural stimulator consisting of a low-dropout (LDO) regulator, an oscillator, and a μ LED. The electrophysiological signal recording system includes an intracortical neural probe implemented on a shape memory polymer (SMP) substrate, an array of neural amplifiers with an integrated analog-to-digital converter (ADC), a transceiver IC, and a ceramic antenna. A digital sub-1-GHz transceiver integrated with a low-power microcontroller (MCU) is used to transmit the acquired neural data to a remote receiver unit, followed by offline spike detection and sorting in LabVIEW. The front-end recording amplifiers provide a gain of 45.7 dB with the input-referred noise of 2.4μVrms . The integrated multiplexer (MUX) with the ADC allows sampling of the amplified voltage at a configurable sampling rate of 160–480 kSamples/s. The total power consumption of the stimulation and the recording system is 23 mW. The dimension of the headstage device is 13.5×21.3 mm, weighing 4 g without the battery. The system is experimentally validated in an in vivo setting by placing the headstage on the head of a male rat and recording the neural signals from the ventral tegmental area (VTA) of the brain. This integrative neural signal recording and spike sorting approach would be useful for the development of a closed-loop neuromodulation system.more » « less
-
This paper presents modeling and optimization of the steering range of a microstrip planar phased array antenna to steer the unidirectional near-field focused beam towards a certain direction. This antenna can be implemented in headstage-based neural stimulation system and wireless recording system for optogenetic neuromodulation applications. The proposed phased-array antenna consists of sixteen elements that are designed to provide a uniform power transmission over the 27 cm×23 cm×16 cm rat behavioral cage area. The proposed transmitter (TX) antenna implements a near-field-based wireless power transmission system operating at 2.4 GHz frequency. The phased array antenna steers the beam from -30° to 60° in the elevation plane by feeding the individual elements with different phases using four 4-bit phase shifters. A design analysis of the beam-steering approach of the phased array antenna is presented and the corresponding simulation and measurement results are included in this paper.more » « less
-
Miniaturization of the neuromodulation system is important for non-invasive or sub-invasive optogenetic application. This work presents an optimized wireless power transfer (WPT) system integrated with an on-chip rectification circuitry and an off-chip stimulation circuitry for optogenetic stimulation of freely moving rodents. The proposed WPT system is built using parallel transmitter (TX) coils on printed circuit board (PCB) and wire-wound based receiver (RX) coil followed by a seven-stage voltage doubler and a low dropout regulator (LDO) circuit designed in 180 nm standard Complementary Metal Oxide Semiconductor (CMOS) process. A pulse stimulation is used to stimulate the neurons which is generated using a commercially available off-the-shelf (COTS) components based oscillator circuit. The intensity of the stimulation is controlled by using a COTS based LED driver circuit which controls the current through the μ LED. The total dimension of the RX coil is 8 mm × 3.4 mm. The maximum power transfer efficiency (PTE) of the proposed WPT system is ∼ 35% and the power conversion efficiency (PCE) of the rectifier is 52%. The proposed system with reconfigurable stimulation frequency is suitable for exciting different brain areas for long-term health monitoring.more » « less
An official website of the United States government
