skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2310020

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present a general class of machine learning algorithms called parametric matrix models. In contrast with most existing machine learning models that imitate the biology of neurons, parametric matrix models use matrix equations that emulate physical systems. Similar to how physics problems are usually solved, parametric matrix models learn the governing equations that lead to the desired outputs. Parametric matrix models can be efficiently trained from empirical data, and the equations may use algebraic, differential, or integral relations. While originally designed for scientific computing, we prove that parametric matrix models are universal function approximators that can be applied to general machine learning problems. After introducing the underlying theory, we apply parametric matrix models to a series of different challenges that show their performance for a wide range of problems. For all the challenges tested here, parametric matrix models produce accurate results within an efficient and interpretable computational framework that allows for input feature extrapolation. 
    more » « less
  2. Abstract An accurate description of low-density nuclear matter is crucial for explaining the physics of neutron star crusts. In the density range between approximately 0.01 fm−3and 0.1 fm−3, matter transitions from neutron-rich nuclei to various higher-density pasta shapes, before ultimately reaching a uniform liquid. In this work, we introduce a variational Monte Carlo method based on a neural Pfaffian-Jastrow quantum state, which allows us to model the transition from the liquid phase to neutron-rich nuclei microscopically. At low densities, nuclear clusters dynamically emerge from the microscopic interactions among protons and neutrons, which we model based on pionless effective field theory. Our variational Monte Carlo approach represents a significant improvement over the state-of-the-art auxiliary-field diffusion Monte Carlo method, which is severely hindered by the fermion-sign problem in this low-density regime and cannot capture the onset of clusters. In addition to computing the energy per particle of symmetric nuclear matter and pure neutron matter, we analyze an intermediate isospin-asymmetry configuration to elucidate the formation of nuclear clusters. We also provide evidence that the presence of such nuclear clusters influences the amount of protons in the crust compared to protons in beta-equilibrated, neutrino-transparent matter. 
    more » « less