skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2310627

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this Letter, we perform fits to B P P decays, where B = { B 0 , B + , B s 0 } and the pseudoscalar P = { π , K } , under the assumption of flavor SU(3) symmetry [ SU ( 3 ) F ]. Although the fits to Δ S = 0 or Δ S = 1 decays individually are good, the combined fit is very poor: there is a 3.6 σ disagreement with the SU ( 3 ) F limit of the standard model ( SM SU ( 3 ) F ). One can remove this discrepancy by adding SU ( 3 ) F -breaking effects, but 1000% SU ( 3 ) F breaking is required. The above results are rigorous, group theoretically—no dynamical assumptions have been made. When one adds an assumption motivated by QCD factorization, the discrepancy with the SM SU ( 3 ) F grows to 4.4 σ . Published by the American Physical Society2024 
    more » « less
    Free, publicly-accessible full text available November 21, 2025
  2. Recently, B P P decays ( B = { B 0 , B + , B s 0 } , P = { π , K } ) were analyzed under the assumption of flavor SU(3) symmetry ( SU ( 3 ) F ). Although the individual fits to Δ S = 0 or Δ S = 1 decays are good, it was found that the combined fit is very poor: there is a 3.6 σ disagreement with the SU ( 3 ) F limit of the standard model ( SM SU ( 3 ) F ). One can remove this discrepancy by adding SU ( 3 ) F -breaking effects, but 1000% SU ( 3 ) F breaking is required. In this paper, we extend this analysis to include decays in which there is an η and/or η meson in the final state. We now find that the combined fit exhibits a 4.1 σ discrepancy with the SM SU ( 3 ) F , and 1000% SU ( 3 ) F -breaking effects are still required to explain the data. These results are rigorous, group-theoretically—no theoretical assumptions have been made. But when one adds some theoretical input motivated by QCD factorization, the discrepancy with the SM SU ( 3 ) F grows to 4.9 σ
    more » « less
    Free, publicly-accessible full text available September 15, 2026
  3. The neutrino research program in the coming decades will require improved precision. A major source of uncertainty is the interaction of neutrinos with nuclei that serve as targets for such experiments. Broadly speaking, this interaction often depends, e.g., for charge-current quasielastic scattering, on the combination of “nucleon physics,” expressed by form factors, and “nuclear physics,” expressed by a nuclear model. It is important to get a good handle on both. We present a fully analytic implementation of the correlated Fermi gas model for electron-nucleus and charge-current quasielastic neutrino-nucleus scattering. The implementation is used to compare separately form factors and nuclear model effects for both electron-carbon and neutrino-carbon scattering data. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  4. The study of $$ \overline{B}\to {D}^{\ast}\tau {\overline{\nu}}_{\tau } $$angular distribution can be used to obtain information about new physics (or beyond the Standard Model) couplings, which are motivated by various B anomalies. However, the inability to measure precisely the three-momentum of the lepton hinders such measurements, as the tau decay contains one or more undetected neutrinos. Here, we present a measurable angular distribution of $$ \overline{B}\to {D}^{\ast}\tau {\overline{\nu}}_{\tau } $$ by considering the additional decay $$ \tau \to \ell {\nu}_{\tau }{\overline{\nu}}_{\ell } $$, wℓ. The full process used is$$ \overline{B}\to {D}^{\ast}\left(\to D\pi \right)\tau \left(\to \ell {\nu}_{\tau }{\overline{\nu}}_{\ell}\right){\overline{\nu}}_{\tau } $$ B ¯ D τ ν τ ν ¯ ν ¯ τ , in which only theℓandD*are reconstructed. A fit to the experimental angular distribution of this process can be used to extract information on new physics parameters. To demonstrate the feasibility of this approach, we generate simulated data for this process and perform a sensitivity study to obtain the expected statistical errors on new physics parameters from experiments in the near future. We obtain a sensitivity of the order of 5% for the right-handed current and around 6% for the tensor current. In addition, we use the recent lattice QCD data onB→D*form factors and obtain correlations between form factors and new physics parameters. 
    more » « less
    Free, publicly-accessible full text available April 17, 2026
  5. In this work, we explore the effect of neutrino nonstandard interactions (NSI) involving the charm quark at SND@LHC. Using an effective description of new physics in terms of four-fermion operators involving a charm quark, we constrain the Wilson coefficients of the effective interaction from two and three-body charmed meson decays. In our fit, we include charmed meson decays not only to pseudoscalar final states but also to vector final states and include decays to the η and η′ final states. We also consider constraints from charmed baryon decays. We then study the effect of new physics in neutrino scattering processes, involving charm production at SND@LHC, for various benchmark new physics couplings obtained from the low energy fits. Finally, we also study the effects of lepton universality violation (LUV) assuming that the new physics coupling is not lepton universal. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025