Recently, decays ( , ) were analyzed under the assumption of flavor SU(3) symmetry ( ). Although the individual fits to or decays are good, it was found that the combined fit is very poor: there is a disagreement with the limit of the standard model ( ). One can remove this discrepancy by adding -breaking effects, but 1000% breaking is required. In this paper, we extend this analysis to include decays in which there is an and/or meson in the final state. We now find that the combined fit exhibits a discrepancy with the , and 1000% -breaking effects are still required to explain the data. These results are rigorous, group-theoretically—no theoretical assumptions have been made. But when one adds some theoretical input motivated by QCD factorization, the discrepancy with the grows to .
more »
« less
Anomalies in Hadronic B Decays
In this Letter, we perform fits to decays, where and the pseudoscalar , under the assumption of flavor SU(3) symmetry [ ]. Although the fits to or decays individually are good, the combined fit is very poor: there is a disagreement with the limit of the standard model ( ). One can remove this discrepancy by adding -breaking effects, but 1000% breaking is required. The above results are rigorous, group theoretically—no dynamical assumptions have been made. When one adds an assumption motivated by QCD factorization, the discrepancy with the grows to . Published by the American Physical Society2024
more »
« less
- Award ID(s):
- 2310627
- PAR ID:
- 10556104
- Publisher / Repository:
- American Physical Society; Physical Review Letters
- Date Published:
- Journal Name:
- Physical Review Letters
- Volume:
- 133
- Issue:
- 21
- ISSN:
- 0031-9007
- Subject(s) / Keyword(s):
- Hadronic B decays Anomalies
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A study is presented of and decays based on the analysis of proton-proton collision data collected with the LHCb detector at center-of-mass energies of 7, 8 and 13 TeV, corresponding to an integrated luminosity of . The invariant-mass distributions of both decay modes show, in the mass region, large activity which is resolved using an amplitude analysis. A simple model, where amplitudes are described by multiple Breit-Wigner functions with appropriate angular distributions, provides a good description of the experimental data. In this approach a complex mixture of , and amplitudes is observed that is dominated by , , , , and resonances. The Dalitz plots are dominated by asymmetric crossing bands which are different for the two decay modes. This is due to a different interference pattern between the and amplitudes in the two channels. Branching fractions are measured for each resonant contribution. © 2025 CERN, for the LHCb Collaboration2025CERNmore » « less
-
A study of and decays to ( ) is performed using collision data collected by the LHCb experiment during LHC Runs 1–2, corresponding to an integrated luminosity of . The branching fractions for these decays are measured using the decay as a control channel. The decays and are observed for the first time. For decay modes with sufficient signal yields, asymmetries are measured in the full and localized regions of the final-state phase space. Evidence is found for violation in the decay, interpreted as originating primarily from an asymmetric decay amplitude. The measured asymmetries for other decays are compatible with zero. © 2025 CERN, for the LHCb Collaboration2025CERNmore » « less
-
The first observation of the decay and measurement of the branching ratio of to are presented. The and mesons are reconstructed using their dimuon decay modes. The results are based on proton-proton colliding beam data from the LHC collected by the CMS experiment at in 2016–2018, corresponding to an integrated luminosity of . The branching fraction ratio is measured to be , where the last uncertainty comes from the uncertainties in the branching fractions of the charmonium states. New measurements of the baryon mass and natural width are also presented, using the final state, where the baryon is reconstructed through the decays , , , and . Finally, the fraction of baryons produced from decays is determined. © 2024 CERN, for the CMS Collaboration2024CERNmore » « less
-
The decay chains are observed, and the spin-parity of baryons is determined for the first time. The measurement is performed using proton-proton collision data at a center-of-mass energy of , corresponding to an integrated luminosity of , recorded by the LHCb experiment between 2016 and 2018. The spin-parity of the baryons is determined to be with a significance of more than ( ) compared to all other tested hypotheses. The up-down asymmetries of the transitions are measured to be ( ), consistent with maximal parity violation, where the first uncertainty is statistical and the second is systematic. These results support the hypothesis that the baryons correspond to the first -wave -mode excitation of the flavor triplet. © 2025 CERN, for the LHCb Collaboration2025CERNmore » « less
An official website of the United States government

