skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2310788

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract BackgroundThe vast majority of findings from human genome-wide association studies (GWAS) map to non-coding sequences, complicating their mechanistic interpretations and clinical translations. Non-coding sequences that are evolutionarily conserved and biochemically active could offer clues to the mechanisms underpinning GWAS discoveries. However, genetic effects of such sequences have not been systematically examined across a wide range of human tissues and traits, hampering progress to fully understand regulatory causes of human complex traits. ResultsHere we develop a simple yet effective strategy to identify functional elements exhibiting high levels of human-mouse sequence conservation and enhancer-like biochemical activity, which scales well to 313 epigenomic datasets across 106 human tissues and cell types. Combined with 468 GWAS of European (EUR) and East Asian (EAS) ancestries, these elements show tissue-specific enrichments of heritability and causal variants for many traits, which are significantly stronger than enrichments based on enhancers without sequence conservation. These elements also help prioritize candidate genes that are functionally relevant to body mass index (BMI) and schizophrenia but were not reported in previous GWAS with large sample sizes. ConclusionsOur findings provide a comprehensive assessment of how sequence-conserved enhancer-like elements affect complex traits in diverse tissues and demonstrate a generalizable strategy of integrating evolutionary and biochemical data to elucidate human disease genetics. 
    more » « less
  2. In this article, we develop CausalEGM, a deep learning framework for nonlinear dimension reduction and generative modeling of the dependency among covariate features affecting treatment and response. CausalEGM can be used for estimating causal effects in both binary and continuous treatment settings. By learning a bidirectional transformation between the high-dimensional covariate space and a low-dimensional latent space and then modeling the dependencies of different subsets of the latent variables on the treatment and response, CausalEGM can extract the latent covariate features that affect both treatment and response. By conditioning on these features, one can mitigate the confounding effect of the high dimensional covariate on the estimation of the causal relation between treatment and response. In a series of experiments, the proposed method is shown to achieve superior performance over existing methods in both binary and continuous treatment settings. The improvement is substantial when the sample size is large and the covariate is of high dimension. Finally, we established excess risk bounds and consistency results for our method, and discuss how our approach is related to and improves upon other dimension reduction approaches in causal inference. 
    more » « less