skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An encoding generative modeling approach to dimension reduction and covariate adjustment in causal inference with observational studies
In this article, we develop CausalEGM, a deep learning framework for nonlinear dimension reduction and generative modeling of the dependency among covariate features affecting treatment and response. CausalEGM can be used for estimating causal effects in both binary and continuous treatment settings. By learning a bidirectional transformation between the high-dimensional covariate space and a low-dimensional latent space and then modeling the dependencies of different subsets of the latent variables on the treatment and response, CausalEGM can extract the latent covariate features that affect both treatment and response. By conditioning on these features, one can mitigate the confounding effect of the high dimensional covariate on the estimation of the causal relation between treatment and response. In a series of experiments, the proposed method is shown to achieve superior performance over existing methods in both binary and continuous treatment settings. The improvement is substantial when the sample size is large and the covariate is of high dimension. Finally, we established excess risk bounds and consistency results for our method, and discuss how our approach is related to and improves upon other dimension reduction approaches in causal inference.  more » « less
Award ID(s):
1952386 2310788
PAR ID:
10530624
Author(s) / Creator(s):
; ;
Publisher / Repository:
PNAS
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
121
Issue:
23
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Higher-order tensors have received increased attention across science and engineering. While most tensor decomposition methods are developed for a single tensor observation, scientific studies often collect side information, in the form of node features and interactions thereof, together with the tensor data. Such data problems are common in neuroimaging, network analysis, and spatial-temporal modeling. Identifying the relationship between a high-dimensional tensor and side information is important yet challenging. Here, we develop a tensor decomposition method that incorporates multiple feature matrices as side information. Unlike unsupervised tensor decomposition, our supervised decomposition captures the effective dimension reduction of the data tensor confined to feature space of interest. An efficient alternating optimization algorithm with provable spectral initialization is further developed. Our proposal handles a broad range of data types, including continuous, count, and binary observations. We apply the method to diffusion tensor imaging data from human connectome project and multi-relational political network data. We identify the key global connectivity pattern and pinpoint the local regions that are associated with available features. The package and data used are available at https://CRAN.R-project.org/package=tensorregress. Supplementary materials for this article are available online. 
    more » « less
  2. We consider the semi-supervised dimension reduction problem: given a high dimensional dataset with a small number of labeled data and huge number of unlabeled data, the goal is to find the low-dimensional embedding that yields good classification results. Most of the previous algorithms for this task are linkage-based algorithms. They try to enforce the must-link and cannot-link constraints in dimension reduction, leading to a nearest neighbor classifier in low dimensional space. In this paper, we propose a new hyperplane-based semi-supervised dimension reduction method---the main objective is to learn the low-dimensional features that can both approximate the original data and form a good separating hyperplane. We formulate this as a non-convex optimization problem and propose an efficient algorithm to solve it. The algorithm can scale to problems with millions of features and can easily incorporate non-negative constraints in order to learn interpretable non-negative features. Experiments on real world datasets demonstrate that our hyperplane-based dimension reduction method outperforms state-of-art linkage-based methods when very few labels are available. 
    more » « less
  3. It is computationally expensive to predict reliability using physical models at the design stage if many random input variables exist. This work introduces a dimension reduction technique based on generalized sliced inverse regression (GSIR) to mitigate the curse of dimensionality. The proposed high dimensional reliability method enables active learning to integrate GSIR, Gaussian Process (GP) modeling, and Importance Sampling (IS), resulting in an accurate reliability prediction at a reduced computational cost. The new method consists of three core steps, 1) identification of the importance sampling region, 2) dimension reduction by GSIR to produce a sufficient predictor, and 3) construction of a GP model for the true response with respect to the sufficient predictor in the reduced-dimension space. High accuracy and efficiency are achieved with active learning that is iteratively executed with the above three steps by adding new training points one by one in the region with a high chance of failure. 
    more » « less
  4. Summary We develop a Bayesian methodology aimed at simultaneously estimating low-rank and row-sparse matrices in a high-dimensional multiple-response linear regression model. We consider a carefully devised shrinkage prior on the matrix of regression coefficients which obviates the need to specify a prior on the rank, and shrinks the regression matrix towards low-rank and row-sparse structures. We provide theoretical support to the proposed methodology by proving minimax optimality of the posterior mean under the prediction risk in ultra-high-dimensional settings where the number of predictors can grow subexponentially relative to the sample size. A one-step post-processing scheme induced by group lasso penalties on the rows of the estimated coefficient matrix is proposed for variable selection, with default choices of tuning parameters. We additionally provide an estimate of the rank using a novel optimization function achieving dimension reduction in the covariate space. We exhibit the performance of the proposed methodology in an extensive simulation study and a real data example. 
    more » « less
  5. Abstract Latent space models are often used to model network data by embedding a network’s nodes into a low-dimensional latent space; however, choosing the dimension of this space remains a challenge. To this end, we begin by formalizing a class of latent space models we call generalized linear network eigenmodels that can model various edge types (binary, ordinal, nonnegative continuous) found in scientific applications. This model class subsumes the traditional eigenmodel by embedding it in a generalized linear model with an exponential dispersion family random component and fixes identifiability issues that hindered interpretability. We propose a Bayesian approach to dimension selection for generalized linear network eigenmodels based on an ordered spike-and-slab prior that provides improved dimension estimation and satisfies several appealing theoretical properties. We show that the model’s posterior is consistent and concentrates on low-dimensional models near the truth. We demonstrate our approach’s consistent dimension selection on simulated networks, and we use generalized linear network eigenmodels to study the effect of covariates on the formation of networks from biology, ecology, and economics and the existence of residual latent structure. 
    more » « less