skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2311075

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Permafrost thaw exhibits an array of spatially heterogenous patterns. As the Arctic continues to warm, those spatial patterns of permafrost thaw, or degradation, are becoming increasingly intricate and dynamic. In particular, ice-wedge permafrost degradation contains a high degree of spatial heterogeneity as ice wedges transition through undegraded, degraded, and stabilized stages. Developing accurate remote sensing methods for characterizing degradation will better allow us to monitor and forecast Arctic landscape evolution and associated land-atmosphere carbon-climate interactions. In this study, we (i) characterized ice-wedge degradation stages across a regional scale using a novel hydrogeomorphic approach. Then, we (ii) assessed the heterogeneity of degradation from meter- to kilometer-scales, and (iii) identified landscape properties associated with degradation patterns. We leveraged the unique spectral and geometric properties of ice-wedge degradation stages to map those stages across 366 km2 of the Arctic Coastal Plain near Prudhoe Bay, Alaska in sub-meter resolution Worldview-2 satellite imagery. Then, we validated the maps with in-situ observations, airborne LIDAR, and drone multispectral surveys. We evaluated spatial heterogeneity in ice-wedge degradation through a clustering approach. Specifically, we grouped regions into hydrogeomorphic clusters defined by similarities in trough widths and flooding, which reflect distinct degradation stages. This analysis revealed that ice-wedge degradation is heterogeneous across both meter and kilometer scales. At the meter scale, a single ice-wedge polygon is generally bounded by varied degradation stages. In addition, the most advanced stages of degradation occur in areas of low trough relative elevation and at the junctions between troughs. At the kilometer-scale, distinct clustering of degradation stages was identified across the region and linked to spatial patterns in topography: regional clusters of advanced degradation occurred in higher elevation areas. The millennial-scale evolution of the landscape has resulted in heterogeneous topographic, hydrologic, and cryogenic characteristics; these varied features exhibit diverse responses to warming events, which reflect the dynamic interplay that occurs between permafrost landscapes and climate change. 
    more » « less