Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 10, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Alistarh, Dan (Ed.)Broadcast is a ubiquitous distributed computing problem that underpins many other system tasks. In static, connected networks, it was recently shown that broadcast is solvable without any node memory and only constant-size messages in worst-case asymptotically optimal time (Hussak and Trehan, PODC'19/STACS'20/DC'23). In the dynamic setting of adversarial topology changes, however, existing algorithms rely on identifiers, port labels, or polynomial memory to solve broadcast and compute functions over node inputs. We investigate space-efficient, terminating broadcast algorithms for anonymous, synchronous, 1-interval connected dynamic networks and introduce the first memory lower bounds in this setting. Specifically, we prove that broadcast with termination detection is impossible for idle-start algorithms (where only the broadcaster can initially send messages) and otherwise requires Ω(log n) memory per node, where n is the number of nodes in the network. Even if the termination condition is relaxed to stabilizing termination (eventually no additional messages are sent), we show that any idle-start algorithm must use ω(1) memory per node, separating the static and dynamic settings for anonymous broadcast. This lower bound is not far from optimal, as we present an algorithm that solves broadcast with stabilizing termination using O(log n) memory per node in worst-case asymptotically optimal time. In sum, these results reveal the necessity of non-constant memory for nontrivial terminating computation in anonymous dynamic networks.more » « less
-
Bessani, Alysson; Défago, Xavier; Nakamura, Junya; Wada, Koichi; Yamauchi, Yukiko (Ed.)Individual modules of programmable matter participate in their system’s collective behavior by expending energy to perform actions. However, not all modules may have access to the external energy source powering the system, necessitating a local and distributed strategy for supplying energy to modules. In this work, we present a general energy distribution framework for the canonical amoebot model of programmable matter that transforms energy-agnostic algorithms into energy-constrained ones with equivalent behavior and an 𝒪(n²)-round runtime overhead - even under an unfair adversary - provided the original algorithms satisfy certain conventions. We then prove that existing amoebot algorithms for leader election (ICDCN 2023) and shape formation (Distributed Computing, 2023) are compatible with this framework and show simulations of their energy-constrained counterparts, demonstrating how other unfair algorithms can be generalized to the energy-constrained setting with relatively little effort. Finally, we show that our energy distribution framework can be composed with the concurrency control framework for amoebot algorithms (Distributed Computing, 2023), allowing algorithm designers to focus on the simpler energy-agnostic, sequential setting but gain the general applicability of energy-constrained, asynchronous correctness.more » « less
-
Alistarh, Dan (Ed.)Local interactions of uncoordinated individuals produce the collective behaviors of many biological systems, inspiring much of the current research in programmable matter. A striking example is the spontaneous assembly of fire ants into "bridges" comprising their own bodies to traverse obstacles and reach sources of food. Experiments and simulations suggest that, remarkably, these ants always form one bridge - instead of multiple, competing bridges - despite a lack of central coordination. We argue that the reliable formation of a single bridge does not require sophistication on behalf of the individuals by provably reproducing this behavior in a self-organizing particle system. We show that the formation of a single bridge by the particles is a statistical inevitability of their preferences to move in a particular direction, such as toward a food source, and their preference for more neighbors. Two parameters, η and β, reflect the strengths of these preferences and determine the Gibbs stationary measure of the corresponding particle system’s Markov chain dynamics. We show that a single bridge almost certainly forms when η and β are sufficiently large. Our proof introduces an auxiliary Markov chain, called an "occupancy chain," that captures only the significant, global changes to the system. Through the occupancy chain, we abstract away information about the motion of individual particles, but we gain a more direct means of analyzing their collective behavior. Such abstractions provide a promising new direction for understanding many other systems of programmable matter.more » « less
-
Robots have components that work together to accomplish a task. Colloids are particles, usually less than 100 µm, that are small enough that they do not settle out of solution. Colloidal robots are particles capable of functions such as sensing, computation, communication, locomotion and energy management that are all controlled by the particle itself. Their design and synthesis is an emerging area of interdisciplinary research drawing from materials science, colloid science, self-assembly, robophysics and control theory. Many colloidal robot systems approach synthetic versions of biological cells in autonomy and may find ultimate utility in bringing these specialized functions to previously inaccessible locations. This Perspective examines the emerging literature and highlights certain design principles and strategies towards the realization of colloidal robots.more » « less
-
Doty, David; Spirakis, Paul (Ed.)We develop a framework for self-induced phase changes in programmable matter in which a collection of agents with limited computational and communication capabilities can collectively perform appropriate global tasks in response to local stimuli that dynamically appear and disappear. Agents reside on graph vertices, where each stimulus is only recognized locally, and agents communicate via token passing along edges to alert other agents to transition to an Aware state when stimuli are present and an Unaware state when the stimuli disappear. We present an Adaptive Stimuli Algorithm that is robust to competing waves of messages as multiple stimuli change, possibly adversarially. Moreover, in addition to handling arbitrary stimulus dynamics, the algorithm can handle agents reconfiguring the connections (edges) of the graph over time in a controlled way. As an application, we show how this Adaptive Stimuli Algorithm on reconfigurable graphs can be used to solve the foraging problem, where food sources may be discovered, removed, or shifted at arbitrary times. We would like the agents to consistently self-organize, using only local interactions, such that if the food remains in a position long enough, the agents transition to a gather phase in which many collectively form a single large component with small perimeter around the food. Alternatively, if no food source has existed recently, the agents should undergo a self-induced phase change and switch to a search phase in which they distribute themselves randomly throughout the lattice region to search for food. Unlike previous approaches to foraging, this process is indefinitely repeatable, withstanding competing waves of messages that may interfere with each other. Like a physical phase change, microscopic changes such as the deletion or addition of a single food source trigger these macroscopic, system-wide transitions as agents share information about the environment and respond locally to get the desired collective response.more » « less
An official website of the United States government
