skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Adaptive Collective Responses to Local Stimuli in Anonymous Dynamic Networks
We develop a framework for self-induced phase changes in programmable matter in which a collection of agents with limited computational and communication capabilities can collectively perform appropriate global tasks in response to local stimuli that dynamically appear and disappear. Agents reside on graph vertices, where each stimulus is only recognized locally, and agents communicate via token passing along edges to alert other agents to transition to an Aware state when stimuli are present and an Unaware state when the stimuli disappear. We present an Adaptive Stimuli Algorithm that is robust to competing waves of messages as multiple stimuli change, possibly adversarially. Moreover, in addition to handling arbitrary stimulus dynamics, the algorithm can handle agents reconfiguring the connections (edges) of the graph over time in a controlled way. As an application, we show how this Adaptive Stimuli Algorithm on reconfigurable graphs can be used to solve the foraging problem, where food sources may be discovered, removed, or shifted at arbitrary times. We would like the agents to consistently self-organize, using only local interactions, such that if the food remains in a position long enough, the agents transition to a gather phase in which many collectively form a single large component with small perimeter around the food. Alternatively, if no food source has existed recently, the agents should undergo a self-induced phase change and switch to a search phase in which they distribute themselves randomly throughout the lattice region to search for food. Unlike previous approaches to foraging, this process is indefinitely repeatable, withstanding competing waves of messages that may interfere with each other. Like a physical phase change, microscopic changes such as the deletion or addition of a single food source trigger these macroscopic, system-wide transitions as agents share information about the environment and respond locally to get the desired collective response.  more » « less
Award ID(s):
2106917 2312537
PAR ID:
10426589
Author(s) / Creator(s):
; ;
Editor(s):
Doty, David; Spirakis, Paul
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Journal Name:
2nd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2023)
Volume:
257
Page Range / eLocation ID:
1-23
Subject(s) / Keyword(s):
Dynamic networks adaptive stimuli foraging self-organizing particle systems programmable matter
Format(s):
Medium: X
Location:
Pisa, Italy
Sponsoring Org:
National Science Foundation
More Like this
  1. Doty, David; Spirakis, Paul (Ed.)
    We develop a framework for self-induced phase changes in programmable matter in which a collection of agents with limited computational and communication capabilities can collectively perform appropriate global tasks in response to local stimuli that dynamically appear and disappear. Agents reside on graph vertices, where each stimulus is only recognized locally, and agents communicate via token passing along edges to alert other agents to transition to an Aware state when stimuli are present and an Unaware state when the stimuli disappear. We present an Adaptive Stimuli Algorithm that is robust to competing waves of messages as multiple stimuli change, possibly adversarially. Moreover, in addition to handling arbitrary stimulus dynamics, the algorithm can handle agents reconfiguring the connections (edges) of the graph over time in a controlled way. As an application, we show how this Adaptive Stimuli Algorithm on reconfigurable graphs can be used to solve the foraging problem, where food sources may be discovered, removed, or shifted at arbitrary times. We would like the agents to consistently self-organize, using only local interactions, such that if the food remains in a position long enough, the agents transition to a gather phase in which many collectively form a single large component with small perimeter around the food. Alternatively, if no food source has existed recently, the agents should undergo a self-induced phase change and switch to a search phase in which they distribute themselves randomly throughout the lattice region to search for food. Unlike previous approaches to foraging, this process is indefinitely repeatable, withstanding competing waves of messages that may interfere with each other. Like a physical phase change, microscopic changes such as the deletion or addition of a single food source trigger these macroscopic, system-wide transitions as agents share information about the environment and respond locally to get the desired collective response. 
    more » « less
  2. Doty, David and (Ed.)
    We develop a framework for self-induced phase changes in programmable matter in which a collection of agents with limited computational and communication capabilities can collectively perform appropriate global tasks in response to local stimuli that dynamically appear and disappear. Agents reside on graph vertices, where each stimulus is only recognized locally, and agents communicate via token passing along edges to alert other agents to transition to an Aware state when stimuli are present and an Unaware state when the stimuli disappear. We present an Adaptive Stimuli Algorithm that is robust to competing waves of messages as multiple stimuli change, possibly adversarially. Moreover, in addition to handling arbitrary stimulus dynamics, the algorithm can handle agents reconfiguring the connections (edges) of the graph over time in a controlled way. As an application, we show how this Adaptive Stimuli Algorithm on reconfigurable graphs can be used to solve the foraging problem, where food sources may be discovered, removed, or shifted at arbitrary times. We would like the agents to consistently self-organize, using only local interactions, such that if the food remains in a position long enough, the agents transition to a gather phase in which many collectively form a single large component with small perimeter around the food. Alternatively, if no food source has existed recently, the agents should undergo a self-induced phase change and switch to a search phase in which they distribute themselves randomly throughout the lattice region to search for food. Unlike previous approaches to foraging, this process is indefinitely repeatable, withstanding competing waves of messages that may interfere with each other. Like a physical phase change, microscopic changes such as the deletion or addition of a single food source trigger these macroscopic, system-wide transitions as agents share information about the environment and respond locally to get the desired collective response. 
    more » « less
  3. Doty, David; Spirakis, Paul (Ed.)
    We develop a framework for self-induced phase changes in programmable matter in which a collection of agents with limited computational and communication capabilities can collectively perform appropriate global tasks in response to local stimuli that dynamically appear and disappear. Agents are represented by vertices in a dynamic graph whose edge set changes over time, and stimuli are placed adversarially on the vertices of where each agent is only capable of recognizing a co-located stimulus. Agents communicate via token passing along edges to alert other agents to transition to an Aware state when stimuli are present and an Unaware state when the stimuli disappear. We present an Adaptive Stimuli Algorithm that can handle arbitrary adversarial stimulus dynamics, while an adversary (or the agents themselves) reconfigures the connections (edges) of over time in a controlled way. This algorithm can be used to solve the foraging problem on reconfigurable graphs where, in addition to food sources (stimuli) being discovered, removed, or shifted arbitrarily, we would like the agents to consistently self-organize, using only local interactions, such that if the food remains in a position long enough, the agents transition to a gather phase in which many collectively form a single large component with small perimeter around the food. Alternatively, if no food source has existed recently, the agents should undergo a self-induced collective phase change and switch to a search phase in which they distribute themselves randomly throughout the graph to search for food. Unlike previous approaches to foraging, this process is indefinitely repeatable, withstanding competing broadcast waves of state transition that may interfere with each other. Like a physical phase change, such as the ferromagnetic models underlying the gather and search algorithms used for foraging, microscopic changes in the environment trigger these macroscopic, system-wide transitions as agents share information and respond locally to get the desired collective response. 
    more » « less
  4. Scheideler, Christian (Ed.)
    The foraging problem asks how a collective of particles with limited computational, communication and movement capabilities can autonomously compress around a food source and disperse when the food is depleted or shifted, which may occur at arbitrary times. We would like the particles to iteratively self-organize, using only local interactions, to correctly gather whenever a food particle remains in a position long enough and search if no food particle has existed recently. Unlike previous approaches, these search and gather phases should be self-induced so as to be indefinitely repeatable as the food evolves, with microscopic changes to the food triggering macroscopic, system-wide phase transitions. We present a stochastic foraging algorithm based on a phase change in the fixed magnetization Ising model from statistical physics: Our algorithm is the first to leverage self-induced phase changes as an algorithmic tool. A key component of our algorithm is a careful token passing mechanism ensuring a dispersion broadcast wave will always outpace a compression wave. 
    more » « less
  5. We aimed to examine mechanistically the observed foraging differences across two honey bee, Apis mellifera , subspecies using the proboscis extension response assay. Specifically, we compared differences in appetitive reversal learning ability between honey bee subspecies: Apis mellifera caucasica (Pollman), and Apis mellifera syriaca (Skorikov) in a “common garden” apiary. It was hypothesized that specific learning differences could explain previously observed foraging behavior differences of these subspecies: A.m. caucasica switches between different flower color morphs in response to reward variability, and A.m. syriaca does not switch. We suggest that flower constancy allows reduced exposure by minimizing search and handling time, whereas plasticity is important when maximizing harvest in preparation for long winter is at a premium. In the initial or Acquisition phase of the test we examined specifically discrimination learning, where bees were trained to respond to a paired conditioned stimulus with an unconditioned stimulus and not to respond to a second conditioned stimulus that is not followed by an unconditioned stimulus. We found no significant differences among the subspecies in the Acquisition phase in appetitive learning. During the second, Reversal phase of the experiment, where flexibility in association was tested, the paired and unpaired conditioned stimuli were reversed. During the Reversal phase A.m. syriaca showed a reduced ability to learn the reverse association in the appetitive learning task. This observation is consistent with the hypothesis that A.m. syriaca foragers cannot change the foraging choice because of lack of flexibility in appetitive associations under changing contingencies. Interestingly, both subspecies continued responding to the previously rewarded conditioned stimulus in the reversal phase. We discuss potential ecological correlates and molecular underpinnings of these differences in learning across the two subspecies. In addition, in a supplemental experiment we demonstrated that these differences in appetitive reversal learning do not occur in other learning contexts. 
    more » « less