Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 18, 2027
-
Abstract In two-dimensional chiral metal-halide perovskites, chiral organic spacers endow structural and optical chirality to the metal-halide sublattice, enabling exquisite control of light, charge, and electron spin. The chiroptical properties of metal-halide perovskites have been measured by transmissive circular dichroism spectroscopy, which necessitates thin-film samples. Here, by developing a reflection-based approach, we characterize the intrinsic, circular polarization-dependent complex refractive index for a prototypical two-dimensional chiral lead-bromide perovskite and report large circular dichroism for single crystals. Comparison with ab initio theory reveals the large circular dichroism arises from the inorganic sublattice rather than the chiral ligand and is an excitonic phenomenon driven by electron-hole exchange interactions, which breaks the degeneracy of transitions between Rashba-Dresselhaus-split bands, resulting in a Cotton effect. Our study suggests that previous data for spin-coated films largely underestimate the optical chirality and provides quantitative insights into the intrinsic optical properties of chiral perovskites for chiroptical and spintronic applications.more » « less
-
Abstract The combined effects of compact TiO2(c‐TiO2) electron‐transport layer (ETL) are investigated without and with mesoscopic TiO2(m‐TiO2) on top, and without and with an iodine‐terminated silane self‐assembled monolayer (SAM), on the mechanical behavior, opto–electronic properties, photovoltaic (PV) performance, and operational‐stability of solar cells based on metal‐halide perovskites (MHPs). The interfacial toughness increases almost threefold in going from c‐TiO2without SAM to m‐TiO2with SAM. This is attributed to the synergistic effect of the m‐TiO2/MHP nanocomposite at the interface and the enhanced adhesion afforded by the iodine‐terminated silane SAM. The combination of m‐TiO2and SAM also offers a significant beneficial effect on the photocarriers extraction at the ETL/MHP interface, resulting in perovskite solar cells (PSCs) with power‐conversion efficiency (PCE) of over 24% and 20% for 0.1 and 1 cm2active areas, respectively. These PSCs also have exceptionally long operational‐stability lives: extrapolatedT80 (duration at 80% initial PCE retained) is ≈18 000 and 10 000 h for 0.1 and 1 cm2active areas, respectively.Postmortemcharacterization and analyses of the operational‐stability‐tested PSCs are performed to elucidate the possible mechanisms responsible for the long operational‐stability.more » « less
-
Two-dimensional hybrid metal-halide perovskites (2D-MHPs) have emerged as important solution-processed semiconductors with favorable optical and electronic properties for diverse applications in photovoltaics, optoelectronics, and spintronics. The quasi-2D layered structures, featuring large acoustic impedance mismatches between the organic and inorganic sublattices, are expected to result in distinct and anisotropic thermal transport properties along the cross-plane and in-plane directions. Here, we introduce transducer-free vibrational-pump-visible-probe (VPVP) approaches that enable accurate quantification of anisotropic thermal transport properties in various archetypical single-crystalline 2D-MHPs. Specifically, using VPVP spectroscopy and VPVP microscopy, we measure the anisotropic thermal diffusivities of 2D-MHPs with systematically varied Pb-I octahedral layer thicknesses, as well as organic spacer types and lengths, revealing how these structural parameters alter the cross-plane and in-plane thermal transport properties in distinct ways. While diffuse interface scattering plays an important role in dictating cross-plane thermal transport, in-plane thermal transport is primarily determined by phonon transport within interconnected inorganic layers. Density functional theory incorporating four-phonon scatterings provides further insight into the low thermal conductivity and modest thermal conduction anisotropy in 2D-MHPs. Our work demonstrates a new all-optical and noncontact method, which requires minimal sample preparation and allows direct visualization of cross-plane and in-plane thermal transport, potentially compatible with sample environments. The demonstrated VPVP approaches can advance understanding of thermal transport in 2D-MHPs as well as wide-ranging hybrid and polymeric semiconductors beyond 2D-MHPs.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Free, publicly-accessible full text available February 24, 2026
-
The detection of mid-infrared (MIR) light is technologically important for applications such as night vision, imaging, sensing, and thermal metrology. Traditional MIR photodetectors either require cryogenic cooling or have sophisticated device structures involving complex nanofabrication. Here, we conceive spectrally tunable MIR detection by using two-dimensional metal halide perovskites (2D-MHPs) as the critical building block. Leveraging the ultralow cross-plane thermal conductivity and strong temperature-dependent excitonic resonances of 2D-MHPs, we demonstrate ambient-temperature, all-optical detection of MIR light with sensitivity down to 1 nanowatt per square micrometer, using plastic substrates. Through the adoption of membrane-based structures and a photonic enhancement strategy unique to our all-optical detection modality, we further improved the sensitivity to sub–10 picowatt-per-square-micrometer levels. The detection covers the mid-wave infrared regime from 2 to 4.5 micrometers and extends to the long-wave infrared wavelength at 10.6 micrometers, with wavelength-independent sensitivity response. Our work opens a pathway to alternative types of solution-processable, long-wavelength thermal detectors for molecular sensing, environmental monitoring, and thermal imaging.more » « less
-
Third-generation photovoltaic materials, including metal halide perovskites (MHPs), colloidal quantum dots (QDs), copper zinc tin sulfide (CZTS), and organic semiconductors, among others, have become attractive in the past two decades. Unlike their first- and second-generation counterparts, these advanced materials boast properties beyond mere photovoltaic performance, such as mechanical flexibility, light weight, and cost-effectiveness. Meanwhile, these materials possess more intricate crystalline structures that aid in understanding and predicting their transport properties. In particular, the distinctive phonon dispersions in MHPs, the layered architecture in quasi-two-dimensional (2D) perovskites, the strong quantum confinement in QDs, and the complex crystal structures interspersed with abundant disorders in quaternary CZTS result in unique and sometimes anomalous thermal transport behaviors. Concurrently, the criticality of thermal management in applications such as photovoltaics, thermoelectrics, light emitting diodes, and photodetection devices has received increased recognition, considering that many of these third-generation photovoltaic materials are not good thermal conductors. Effective thermal management necessitates precise measurement, advanced modeling, and a profound understanding and interpretation of thermal transport properties in these novel materials. In this review, we provide a comprehensive summary of various techniques for measuring thermal transport properties of these materials and discuss the ultralow thermal conductivities of three-dimensional (3D) MHPs, superlattice-like thermal transport in 2D perovskites, and novel thermal transport characteristics inherent in QDs and CZTS. By collecting and comparing the literature-reported results, we offer a thorough discussion on the thermal transport phenomenon in these materials. The collective understanding from the literature in this area, as reviewed in this article, can provide guidance for improving thermal management across a wide spectrum of applications extending beyond photovoltaics.more » « less
An official website of the United States government
