skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Stability Analysis of Unsteady Laminar Boundary Layers Subject to Streamwise Pressure Gradient
A transient stability flow analysis is performed using the unsteady laminar boundary layer equations. The flow dynamics are studied via the Navier–Stokes equations. In the case of external spatially developing flow, the differential equations are reduced via Prandtl or boundary-layer assumptions, consisting of continuity and momentum conservation equations. Prescription of streamwise pressure gradients (decelerating and accelerating flows) is carried out by an impulsively started Falkner–Skan (FS) or wedge-flow similarity flow solution in the case of flat plate or a Blasius solution for particular zero-pressure gradient case. The obtained mean streamwise velocity and its derivatives from FS flows are then inserted into the well-known Orr–Sommerfeld equation of small disturbances at different dimensionless times (τ). Finally, the corresponding eigenvalues are dynamically computed for temporal stability analysis. A finite difference algorithm is effectively applied to solve the Orr–Sommerfeld equations. It is observed that flow acceleration or favorable pressure gradients (FPGs) lead to a significantly shorter transient period before reaching steady-state conditions, as the developed shear layer is notably thinner compared to cases with adverse pressure gradients (APGs). During the transient phase (i.e., for τ<1), the majority of the flow modifications are confined to the innermost 20–25% of the boundary layer, in proximity to the wall. In the context of temporal flow stability, the magnitude of the pressure gradient is pivotal in determining the streamwise extent of the Tollmien–Schlichting (TS) waves. In highly accelerated laminar flows, these waves experience considerable elongation. Conversely, under the influence of a strong adverse pressure gradient, the characteristic streamwise length of the smallest unstable wavelength, which is necessary for destabilization via TS waves, is significantly reduced. Furthermore, flows subjected to acceleration (β > 0) exhibit a higher propensity to transition towards a more stable state during the initial transient phase. For instance, the time response required to reach the steady-state critical Reynolds number was approximately 1τ for β = 0.18 (FPG) and τ = 6.8 for β = −0.18 (APG).  more » « less
Award ID(s):
2314303
PAR ID:
10596985
Author(s) / Creator(s):
;
Publisher / Repository:
Fluids
Date Published:
Journal Name:
Fluids
Volume:
10
Issue:
4
ISSN:
2311-5521
Page Range / eLocation ID:
100
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The logarithmic law of the wall does not capture the mean flow when a boundary layer is subjected to a strong pressure gradient. In such a boundary layer, the mean flow is affected by the spatio-temporal history of the imposed pressure gradient; and accounting for history effects remains a challenge. This work aims to develop a universal mean flow scaling for boundary layers subjected to arbitrary adverse or/and favourable pressure gradients. We derive from the Navier–Stokes equation a velocity transformation that accounts for the history effects and maps the mean flow to the canonical law of the wall. The transformation is tested against channel flows with a suddenly imposed adverse or favourable pressure gradient, boundary layer flows subjected to an adverse pressure gradient, and Couette–Poiseuille flows with a streamwise pressure gradient. It is found that the transformed velocity profiles follow closely the equilibrium law of the wall. 
    more » « less
  2. This paper focuses on the laminar boundary layer startup process (momentum and thermal) in incompressible flows. The unsteady boundary layer equations can be solved via similarity analysis by normalizing the stream-wise (x), wall-normal (y) and time (t) coordinates by a variable η and τ, respectively. The resulting ODEs are solved by a finite difference explicit algorithm. This can be done for two cases: flat plate flow where the change in pressure are zero (Blasius solution) and wedge or Falkner-Skan flow where the changes in pressure can be favorable (FPG) or adverse (APG). In addition, transient passive scalar transport is examined by setting several Prandtl numbers in the governing equation at two different wall thermal conditions: isothermal and isoflux. Numerical solutions for the transient evolution of the momentum and thermal boundary layer profiles are compared with analytical approximations for both small times (unsteady flow) and large (steady-state flow) times. 
    more » « less
  3. Turbulent boundary layers on immersed objects can be significantly altered by the pressure gradients imposed by the flow outside the boundary layer. The interaction of turbulence and pressure gradients can lead to complex phenomena such as relaminarization, history effects and flow separation. The angular momentum integral (AMI) equation (Elnahhas & Johnson,J. Fluid Mech., vol. 940, 2022, A36) is extended and applied to high-fidelity simulation datasets of non-zero pressure gradient turbulent boundary layers. The AMI equation provides an exact mathematical equation for quantifying how turbulence, free-stream pressure gradients and other effects alter the skin friction coefficient relative to a baseline laminar boundary layer solution. The datasets explored include flat-plate boundary layers with nearly constant adverse pressure gradients, a boundary layer over the suction surface of a two-dimensional NACA 4412 airfoil and flow over a two-dimensional Gaussian bump. Application of the AMI equation to these datasets maps out the similarities and differences in how boundary layers interact with favourable and adverse pressure gradients in various scenarios. Further, the fractional contribution of the pressure gradient to skin friction attenuation in adverse-pressure-gradient boundary layers appears in the AMI equation as a new Clauser-like parameter with some advantages for understanding similarities and differences related to upstream history effects. The results highlight the applicability of the integral-based analysis to provide quantitative, interpretable assessments of complex boundary layer physics. 
    more » « less
  4. The spatiotemporal dynamics of a turbulent boundary layer subjected to an unsteady pressure gradient are studied. A dynamic sequence of favourable to adverse pressure gradients (FAPGs) is imposed by deforming a section of the wind tunnel ceiling, transitioning the pressure gradient from zero to a strong FAPG within 0.07 s. At the end of the transient, the acceleration parameter is K=6x10^-6 in the favourable pressure gradient (FPG) region and K=-4.8x10^-6 in the adverse pressure gradient (APG) region. The resulting unsteady response of the boundary layer is compared with equivalent steady pressure gradient cases in terms of turbulent statistics and coherent structures. While the steady FAPG effects, as shown by Parthasarathy & Saxton-Fox (2023), caused upstream stabilisation in the FPG, a milder APG response downstream, and the formation of an internal layer, the unsteady case presented in this paper shows a reduced stabilisation in the FPG region, a stronger APG response and a weaker internal layer. This altered response is hypothesised to stem from the different spatiotemporal pressure gradient histories experienced by turbulent structures when the pressure gradient changes at a time scale comparable to their convection. 
    more » « less
  5. Motivated by the need for accurate determination of wall shear stress from profile measurements in turbulent boundary layer flows, the total shear stress balance is analysed and reformulated using several well-established semi-empirical relations. The analysis highlights the significant effect that small pressure gradients can have on parameters deduced from data even in nominally zero pressure gradient boundary layers. Using the comprehensive shear stress balance together with the log-law equation, it is shown that friction velocity, roughness length and zero-plane displacement can be determined with only velocity and turbulent shear stress profile measurements at a single streamwise location for nominally zero pressure gradient turbulent boundary layers. Application of the proposed analysis to turbulent smooth- and rough-wall experimental data shows that the friction velocity is determined with accuracy comparable to force balances (approximately 1 %–4 %). Additionally, application to boundary layer data from previous studies provides clear evidence that the often cited discrepancy between directly measured friction velocities (e.g. using force balances) and those derived from traditional total shear stress methods is likely due to the small favourable pressure gradient imposed by a fixed cross-section facility. The proposed comprehensive shear stress analysis can account for these small pressure gradients and allows more accurate boundary layer wall shear stress or friction velocity determination using commonly available mean velocity and shear stress profile data from a single streamwise location. 
    more » « less