skip to main content


Search for: All records

Award ID contains: 2316353

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Identifying the underlying trajectory pattern in the spatial‐temporal data analysis is a fundamental but challenging task. In this paper, we study the problem of simultaneously identifying temporal trends and spatial clusters of spatial‐temporal trajectories. To achieve this goal, we propose a novel method named spatial clustered and sparse nonparametric regression (). Our method leverages the B‐spline model to fit the temporal data and penalty terms on spline coefficients to reveal the underlying spatial‐temporal patterns. In particular, our method estimates the model by solving a doubly‐penalized least square problem, in which we use a group sparse penalty for trend detection and a spanning tree‐based fusion penalty for spatial cluster recovery. We also develop an algorithm based on the alternating direction method of multipliers (ADMM) algorithm to efficiently minimize the penalized least square loss. The statistical consistency properties of estimator are established in our work. In the end, we conduct thorough numerical experiments to verify our theoretical findings and validate that our method outperforms the existing competitive approaches.

     
    more » « less
    Free, publicly-accessible full text available April 17, 2025