skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Scanner: Simultaneously temporal trend and spatial cluster detection for spatial‐temporal data
Abstract Identifying the underlying trajectory pattern in the spatial‐temporal data analysis is a fundamental but challenging task. In this paper, we study the problem of simultaneously identifying temporal trends and spatial clusters of spatial‐temporal trajectories. To achieve this goal, we propose a novel method named spatial clustered and sparse nonparametric regression (). Our method leverages the B‐spline model to fit the temporal data and penalty terms on spline coefficients to reveal the underlying spatial‐temporal patterns. In particular, our method estimates the model by solving a doubly‐penalized least square problem, in which we use a group sparse penalty for trend detection and a spanning tree‐based fusion penalty for spatial cluster recovery. We also develop an algorithm based on the alternating direction method of multipliers (ADMM) algorithm to efficiently minimize the penalized least square loss. The statistical consistency properties of estimator are established in our work. In the end, we conduct thorough numerical experiments to verify our theoretical findings and validate that our method outperforms the existing competitive approaches.  more » « less
Award ID(s):
2316353
PAR ID:
10504173
Author(s) / Creator(s):
;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Environmetrics
ISSN:
1180-4009
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In many real-world applications of monitoring multivariate spatio-temporal data that are non-stationary over time, one is often interested in detecting hot-spots with spatial sparsity and temporal consistency, instead of detecting system-wise changes as in traditional statistical process control (SPC) literature. In this paper, we propose an efficient method to detect hot-spots through tensor decomposition, and our method has three steps. First, we fit the observed data into a Smooth Sparse Decomposition Tensor (SSD-Tensor) model that serves as a dimension reduction and de-noising technique: it is an additive model decomposing the original data into: smooth but non-stationary global mean, sparse local anomalies, and random noises. Next, we estimate model parameters by the penalized framework that includes Least Absolute Shrinkage and Selection Operator (LASSO) and fused LASSO penalty. An efficient recursive optimization algorithm is developed based on Fast Iterative Shrinkage Thresholding Algorithm (FISTA). Finally, we apply a Cumulative Sum (CUSUM) Control Chart to monitor model residuals after removing global means, which helps to detect when and where hot-spots occur. To demonstrate the usefulness of our proposed SSD-Tensor method, we compare it with several other methods including scan statistics, LASSO-based, PCA-based, T2-based control chart in extensive numerical simulation studies and a real crime rate dataset. 
    more » « less
  2. We develop a sparse image reconstruction method for polychromatic tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. To obtain a parsimonious measurement model parameterization, we first rewrite the measurement equation using our mass attenuation parameterization, which has the Laplace integral form. The unknown mass-attenuation spectrum is expanded into basis functions using a B-spline basis of order one. We develop a block coordinate-descent algorithm for constrained minimization of a penalized negative log-likelihood function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and sparsity of the density map image in the wavelet domain. This algorithm alternates between a Nesterov’s proximal-gradient step for estimating the density map image and an active-set step for estimating the incident spectrum parameters. Numerical simulations demonstrate the performance of the proposed scheme. 
    more » « less
  3. We develop a sparse image reconstruction method for Poisson-distributed polychromatic X-ray computed tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. We employ our mass-attenuation spectrum parameterization of the noiseless measurements for single-material objects and express the mass-attenuation spectrum as a linear combination of B-spline basis functions of order one. A block coordinate-descent algorithm is developed for constrained minimization of a penalized Poisson negative log-likelihood (NLL) cost function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and nonnegativity and sparsity of the density-map image; the image sparsity is imposed using a convex total-variation (TV) norm penalty term. This algorithm alternates between a Nesterov’s proximal-gradient (NPG) step for estimating the density-map image and a limited-memory Broyden-Fletcher-Goldfarb-Shanno with box constraints (L-BFGS-B) step for estimating the incident-spectrum parameters. We establish conditions for biconvexity of the penalized NLL objective function, which, if satisfied, ensures monotonicity of the NPG-BFGS iteration. We also show that the penalized NLL objective satisfies the Kurdyka-Łojasiewicz property, which is important for establishing local convergence of block-coordinate descent schemes in biconvex optimization problems. Simulation examples demonstrate the performance of the proposed scheme. 
    more » « less
  4. null (Ed.)
    SUMMARY In this article, we investigate the problem of parameter identification of spatial–temporal varying processes described by a general nonlinear partial differential equation and validate the feasibility and robustness of the proposed algorithm using a group of coordinated mobile robots equipped with sensors in a realistic diffusion field. Based on the online parameter identification method developed in our previous work using multiple mobile robots, in this article, we first develop a parameterized model that represents the nonlinear spatially distributed field, then develop a parameter identification scheme consisting of a cooperative Kalman filter and recursive least square method. In the experiments, we focus on the diffusion field and consider the realistic scenarios that the diffusion field contains obstacles and hazard zones that the robots should avoid. The identified parameters together with the located source could potentially assist in the reconstruction and monitoring of the field. To validate the proposed methods, we generate a controllable carbon dioxide (CO 2 ) field in our laboratory and build a static CO 2 sensor network to measure and calibrate the field. With the reconstructed realistic diffusion field measured by the sensor network, a multi-robot system is developed to perform the parameter identification in the field. The results of simulations and experiments show satisfactory performance and robustness of the proposed algorithms. 
    more » « less
  5. We consider the problem of inferring the conditional independence graph (CIG) of a high-dimensional stationary multivariate Gaussian time series. A sparse-group lasso-based frequency-domain formulation of the problem has been considered in the literature where the objective is to estimate the sparse inverse power spectral density (PSD) of the data via optimization of a sparse-group lasso based penalized log-likelihood cost function that is formulated in the frequency-domain. The CIG is then inferred from the estimated inverse PSD. Optimization in the previous approach was performed using an alternating minimization (AM) approach whose performance depends upon choice of a penalty parameter. In this paper we investigate an alternating direction method of multipliers (ADMM) approach for optimization to mitigate dependence on the penalty parameter. We also investigate selection of the tuning parameters based on Bayesian information criterion, and illustrate our approach using synthetic and real data. Comparisons with the "usual" i.i.d. modeling of time series for graph estimation are also provided. 
    more » « less