- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002100000000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Tizpaz-Niari, Saeid (3)
-
Trivedi, Ashutosh (3)
-
Das, Rohan (1)
-
Dewangan, Varsha (1)
-
Gogani-Khiabani, Sina (1)
-
Kreinovich, Vladik (1)
-
Monjezi, Verya (1)
-
Olson, Nina (1)
-
Pacheco, Maria L (1)
-
Robles_Herrera, Salvador (1)
-
Srinivas, Dananjay (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
Johnson, Barry (1)
-
McClelland, Robert (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
McClelland, Robert; Johnson, Barry (Ed.)As the US tax law evolves to adapt to ever-changing politico-economic realities, tax preparation software plays a significant role in helping taxpayers navigate these complexities. The dynamic nature of tax regulations poses a significant challenge to accurately and timely maintaining tax software artifacts. The state-of-the-art in maintaining tax prep software is time-consuming and error-prone as it involves manual code analysis combined with an expert interpretation of tax law amendments. We posit that the rigor and formality of tax amendment language, as expressed in IRS publications, makes it amenable to automatic translation to executable specifications (code). Our research efforts focus on identifying, understanding, and tackling technical challenges in leveraging Large Language Models (LLMs), such as ChatGPT and Llama, to faithfully extract code differentials from IRS publications and automatically integrate them with the prior version of the code to automate tax prep software maintenance.more » « less
-
Robles_Herrera, Salvador; Monjezi, Verya; Kreinovich, Vladik; Trivedi, Ashutosh; Tizpaz-Niari, Saeid (, ACM)
-
Srinivas, Dananjay; Das, Rohan; Tizpaz-Niari, Saeid; Trivedi, Ashutosh; Pacheco, Maria L (, Association for Computational Linguistics)Due to the ever-increasing complexity of in- come tax laws in the United States, the num- ber of US taxpayers filing their taxes using tax preparation software (henceforth, tax soft- ware) continues to increase. According to the U.S. Internal Revenue Service (IRS), in FY22, nearly 50% of taxpayers filed their individual income taxes using tax software. Given the legal consequences of incorrectly filing taxes for the taxpayer, ensuring the correctness of tax software is of paramount importance. Meta- morphic testing has emerged as a leading solu- tion to test and debug legal-critical tax software due to the absence of correctness requirements and trustworthy datasets. The key idea behind metamorphic testing is to express the proper- ties of a system in terms of the relationship between one input and its slightly metamor- phosed twinned input. Extracting metamor- phic properties from IRS tax publications is a tedious and time-consuming process. As a response, this paper formulates the task of gen- erating metamorphic specifications as a transla- tion task between properties extracted from tax documents—expressed in natural language—to a contrastive first-order logic form. We per- form a systematic analysis on the potential and limitations of in-context learning with Large Language Models (LLMs) for this task, and outline a research agenda towards automating the generation of metamorphic specifications for tax preparation software.more » « less
An official website of the United States government

Full Text Available