skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2317598

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The stratigraphic sections in the Bogda Mountains, Xinjiang, NW China, provide detailed records of the terrestrial paleoenvironments during the late Permian to Early Triassic time at the paleo-mid-latitude of NE Pangea. The South Taodonggou (STDG), Central Taodonggou (CTDG), South Tarlong (STRL) and North Tarlong (NTRL) sections are located in the Tarlong-Taodonggou half graben at the southern foothills of Bogda Mountains (Yang et al., 2010, 2021; Guan, 2011; Peng, 2016; Obrist-Farner and Yang, 2017; Fredericks, 2017; Zheng and Yang, 2020). Lake expansion and contraction, and fluvial peneplanation and deposition, occurred repetitively in the basin (Yang et al., 2007, 2010, 2021). This study carried out gamma analysis, gamma and astronomical tuning, and spectral analysis of the lithofacies and environmental series. The thicknesses of the STDG, CTDG, STRL, and NTRL sections are 282.9 m, 539.7 m, 872.2 m, and 826.1 m, respectively. The major lithofacies are conglomerate, sandstone, mudrock, carbonate rock, and paleosols (Yang et al., 2010, 2021). Gamma analysis generates facies-dependent thickness-time conversion factors (gamma values) to construct gamma-tuned time series (Kominz and Bond, 1990; Bond et al., 1991; Kominz et al., 1991), which are more realistic than the untuned thickness series. Positive and stable gamma values suggest that the assumption of a unique sedimentation rate for each facies is not violated. The sedimentation rates of individual facies ranged from 0.18 to 1.53 m/kyr in the STDG section, 0.13 to 2.43 m/kyr in the CTDG section, 0.29 to 1.03 m/kyr in the STRL section, and 0.3 to 1.09 m/kyr in the NTRL section with average rates of 0.33 m/kyr, 0.3 m/kyr, 0.44 m/kyr and 0.46 m/kyr, respectively. The average sedimentation rates of the STRL and NTRL sections are 1.5 times greater than those of the STDG and CTDG sections. This difference can be attributed to the accommodation space, with the STRL and NTRL sections situated on the axial subsidence and depositional center of the half graben, while the STDG and CTDG sections are on the ramp margin. The stratigraphic completeness of the four sections ranges from 32% to 57% as the ratio between depositional and total durations. Astronomical tuning mitigated the long-term impact of variable sedimentation rates. The gamma and astronomical tuning enhance the spectral resolution of the environmental series. Spectral analysis of the astronomical-gamma-tuned series of STDG, CTDG, STRL and NTRL sections reveal significant peaks ranging from 14.2 to 405 kyr, corresponding to Milankovitch cycles (Figure 1). The evolutive spectrograms of the STDG, CTDG, STRL and NTRL sections contain many peaks with varying magnitude and frequency persistency throughout the entire section, with notable differences between the lower and upper parts (Figure 1). Most fluvial and lacustrine high order cycles (HCs) have durations less than 14 kyr, while some have durations same as obliquity and precession index cycle periods. The high-frequency signals, representing these HCs, in the sub-Milankovitch bands in the spectra are interpreted as combination tones of the eccentricity and precession index cycles. These results suggest that the cyclic sedimentation of the fluvial-lacustrine cycles was predominantly controlled by Milankovitch paleoclimatic forcing with variable strength evident across the entire sections. 
    more » « less
    Free, publicly-accessible full text available August 26, 2026
  2. Provenance of uppermost Carboniferous–Lower Triassic sandstones, Bogda Mountains, NW China: implication on late Paleozoic tectonic history of southern Central Asian Orogenic Belt The Permian-Triassic time is a critical stage in the Paleozoic continental amalgamation and Cenozoic orogenic reactivation of southern Central Asian Orogenic Belt (CAOB). Field, petrographic and detrital zircon U-Pb geochronological data of the uppermost Carboniferous– Lower Triassic sandstones from 3 sections in Bogda Mountains, greater Turpan-Junggar basin, NW China, are used to decipher the tectonic history. They are Tarlong- Taodonggou (TT) and Zhaobishan (ZBS) in the south and Dalongkou (DLK) in the north, 100 km apart and ~7,000 m in total thickness. Four petrofacies of 229 sandstones are defined using the abundance of volcanic, sedimentary, and metamorphic (with polycrystalline quartz) lithics. Petrofacies A (Lv73Ls21(Qp+Lm)6) contains mainly volcanic lithics, indicating a volcanic arc as the main source. Petrofacies B (Lv14Ls41(Qp+Lm)45) and Petrofacies C (Lv38Ls14(Qp+Lm)48) contain mixed sedimentary, metamorphic, and volcanic lithics, indicating multiple sources. Petrofacies D (Lv11Ls82(Qp+Lm)7) contains mainly sedimentary lithics with a trace amount of volcanic and metamorphic lithics, indicating local rift-shoulder sedimentary sources. Additionally, the U-Pb dates of 3505 detrital zircon grains of 35 sandstones were analyzed. The predominant Paleozoic zircon grains yield major age populations at ca. 360–280 Ma and 485–385 Ma. Precambrian dates are present, ranging from 542 Ma to 3329 Ma. During Gzhelian–Asselian, andesite and basalt are the major source lithologies in TT. Zircon ages peak at ~300 Ma. During Sakmarian–Kungurian, basalt and andesite are the main source rocks in TT and ZBS; and zircon ages of both areas peak at ~300 Ma. The Roadian–Wordian is probably represented by a regional unconformity. The Guadalupian source lithology and zircon date show a major change. Andesite is the common and rhyolite and basalt minor source lithologies for TT and DLK; but rhyolite significant for ZBS. A unimodal peak at ~305 Ma occurs in TT; two peaks at 305 and 455 Ma with common Precambrian dates in ZBS; and peaks of 310–295 Ma in DLK. During Wuchiapingian–mid Olenekian, andesite and rhyolite are the common source lithologies for TT and DLK, and rhyolite as the primary volcanic lithology for ZBS. In TT, Wuchiapingian-Induan samples have a major age peak at ~300 Ma, and an Olenekian sample has two peaks at ~300 and ~450 Ma. In ZBS, the age pattern is similar to that of the Guadalupian sample. In DLK, samples have a major age peak at ~310 Ma and a minor peak at ~450 Ma. The comparable age clusters identified by multi-dimensional scaling indicate that North Tianshan is the source for TT and ZBS during the latest Carboniferous–early Permian. But south Central Tianshan became the main source solely to ZBS. During late Permian–Early Triassic, both north and central Tianshan became the common sources to the three areas due to enhanced denudation. The source change in mid-Permian across a regional unconformity is synchronous with Paleo-Asian Ocean closure and arc-continent and continent-continent collisions, which occurred no later than Guadalupian. 
    more » « less
    Free, publicly-accessible full text available August 25, 2026
  3. The Permian witnessed some of the most profound climatic, biotic, and tectonic events in Earth’s history. Global orogeny leading to the assembly of Pangea culminated by middle Permian time, and included multiple orogenic belts in the equatorial Central Pangean Mountains, from the Variscan-Hercynian system in the East to the Ancestral Rocky Mountains in the West. Earth’s penultimate global icehouse peaked in early Permian time, transitioning to full greenhouse conditions by late Permian time, constituting the only example of icehouse collapse on a fully vegetated Earth. The Late Paleozoic Ice Age was the longest and most intense glaciation of the Phanerozoic. Reconstructions of atmospheric composition in the Permian record the lowest CO2 and highest O2 levels of the Phanerozoic, with average CO2 levels comparable to the Quaternary, rapidly warming climate. Fundamental shifts occurred in atmospheric circulation: a global megamonsoon developed, and the tropics became anomalously arid with time. Extreme environments are well documented in the form of voluminous dust deposits, acid-saline lakes and groundwaters, extreme continental temperatures and aridity, and major shifts in biodiversity, ultimately culminating in the largest extinction of Earth history at the Permian-Triassic boundary.The Deep Dust project seeks to elucidate paleoclimatic conditions and forcings through the Permian at temporal scales ranging from millennia to Milankovitch cycles and beyond by acquiring continuous core in continental lowlands known to harbor stratigraphically complete records dominated by loess and lacustrine strata. Our initial site is in the midcontinental U.S.— the Anadarko Basin (Oklahoma), which harbors a complete continental Permian section from western equatorial Pangaea. We will also address the nature and character of the modern and fossil microbial biosphere, the chemistry of saline lake waters and groundwaters, Mars-analog conditions, and exhumation histories of source regions. Importantly, data from Deep Dust will be integrated with Earth-system modelling. This is crucial for putting the (necessarily local) drill core data into the broader global context and for understanding relevant mechanisms and feedbacks of the Permian Earth system. 
    more » « less
    Free, publicly-accessible full text available March 18, 2026
  4. Brinkhuis, Henk (Ed.)
    Searching for land refugia becomes imperative for human survival during the hypothetical sixth mass extinction. Studying past comparable crises can offer insights, but there is no fossil evidence of diverse megafloral ecosystems surviving the largest Phanerozoic biodiversity crisis. Here, we investigated palynomorphs, plant, and tetrapod fossils from the Permian-Triassic South Taodonggou Section in Xinjiang, China. Our fossil records, calibrated by a high-resolution age model, reveal the presence of vibrant regional gymnospermous forests and fern fields, while marine organisms experienced mass extinction. This refugial vegetation was crucial for nourishing the substantial influx of surviving animals, thereby establishing a diverse terrestrial ecosystem approximately 75,000 years after the mass extinction. Our findings contradict the widely held belief that restoring terrestrial ecosystem functional diversity to pre-extinction levels would take millions of years. Our research indicates that moderate hydrological fluctuations throughout the crisis sustained this refugium, likely making it one of the sources for the rapid radiation of terrestrial life in the early Mesozoic. 
    more » « less
    Free, publicly-accessible full text available March 14, 2026
  5. Livescu, Silviu (Ed.)
    A close correlation between lithofacies and organofacies in meter-scale high-order cycles composed of lacustrine sediments enables comparison and refinement of lithofacies-defined cyclostratigraphy. Four lithofacies and four organofacies have been identified in fluctuating profundal high-order cycles in the lower-Permian Lucaogou Formation, southern Bogda Mountains, NW China. The four lithofacies include interbedded and interlaminated coarse siltstone and very fine sandstone, black shale, wackestone and dolostone, and calcareous and dolomitic shales. Four distinctive organofacies have been identified, on the basis of geochemical composition of organic matter and specific biomarker proxies related to organic matter types, rather than to depositional conditions and thermal maturity. The four organofacies are associated with the four lithofacies in the meter-scale high-order cycles, suggesting litho- and organo-facies may be genetically linked and may have been controlled by lake contraction and extension. The study shows that the lithofacies-derived and environment-defined high-order cycles can be delineated and substantiated by geochemical proxies-defined organofacies. This study also demonstrates that a holistic approach combining litho- and organic geochemical data is useful in reconstruction of meter-scale lacustrine cycles in a half-graben. 
    more » « less
  6. Exceptionally well-preserved impression fossils of Cyrillopteris (ex. Odontopteris) orbicularis (Halle) comb. et emend. nov. have been described from the lower part of the middle–upper Permian Upper Shihezi (Upper Shihhotse) Formation in Yangquan City, Shanxi Province, North China. For the first time, this typical Cathaysian seed fern is confirmed to have a bipartite frond with two bipinnate branches, comparable with that of C. genuina (Grand’Eury) Laveine et Oudoire from the Pennsylvanian of France. Entire-margined cyclopteriod elements occur in the proximal portion of the long petiole. With increasing proximity of the bifurcation, the cyclopteroid elements progressively differentiate into pinnae with individual pinnules. True intercalary pinnules, which would be fully inserted on the primary rachides, are not present. Characteristics of our new specimens provide new information on the frond architecture of C. orbicularis (Halle) comb. et emend. nov., and allow a relatively complete circumscription of the overall features of this taxon, an emendation of the species diagnosis, and the presentation of an accurate frond reconstruction. Specimens of C. orbicularis comb. et emend. nov. are preserved with mesophytes and xerophytes from the same interval, demonstrating the vegetation in the research area grew under a seasonal subhumid to semiarid climates during the late Guadalupian. 
    more » « less
  7. The Permian-Triassic time is a significant stage in the Paleozoic continental amalgamation and Cenozoic orogenic reactivation of southern Central Asian Orogenic Belt (CAOB). Field, petrographic, and detrital zircon U-Pb geochronological data of the uppermost Carboniferous–Lower Triassic sandstones from 3 sections in Bogda Mountains, greater Turpan-Junggar basin, NW China, are used to decipher the tectonic history. The sections are Tarlong-Taodonggou (TT) and Zhaobishan (ZBS) in the south and Dalongkou (DLK) in the north, 100 km apart and ~7,000 m in total thickness. Four petrofacies of 229 sandstones and U-Pb dates of 3505 zircons of 35 sandstones form the basis for interpretation. During Gzhelian–Asselian, andesite and basalt are the major source lithologies in TT. Zircon ages peak at ~300 Ma. During Sakmarian–Kungurian, basalt and andesite are the main source rocks in TT and ZBS; and zircon ages of both areas peak at ~300 Ma. The Roadian–Wordian is represented by a regional unconformity. The Guadalupian source lithology and zircon date show a major change. Andesite is the common and rhyolite and basalt the minor source lithologies for TT and DLK; but rhyolite for ZBS. A unimodal peak at ~305 Ma occurs in TT; but two peaks at 305 and 455 Ma with common Precambrian dates in ZBS; and peaks of 310–295 Ma in DLK. During Wuchiapingian–mid Olenekian, andesite and rhyolite are the common source lithologies for TT and DLK; but rhyolite as the primary volcanic lithology for ZBS. In TT, Wuchiapingian- Induan samples have a major age peak at ~300 Ma, and an Olenekian sample has two peaks at ~300 and ~450 Ma. In ZBS, the age pattern is similar to that of the Guadalupian sample. In DLK, samples have a major peak at ~310 Ma and a minor peak at ~450 Ma. The comparable age clusters identified by multi-dimensional scaling indicate that North Tianshan is the source for TT and ZBS during the latest Carboniferous–early Permian. But in mid Permian, south Central Tianshan became the main source solely to ZBS. During late Permian–Early Triassic, both north and central Tianshan became the common sources to all three areas due to enhanced denudation. The source change in mid-Permian across a regional unconformity is synchronous with Paleo-Asian Ocean closure and arc-continent and continent-continent collisions, which occurred along the southern margin of Turpan- Junggar basin no later than Guadalupian. 
    more » « less
  8. The Capitanian–lower Wuchiapingian lower and upper Quanzijie low-order cycles (QZJ LCs) in Bogda Mountains, NW China, containevidence of mountain glaciation and loess deposition in eastern Kazakhstan Plate. They occur in Zhaobishan (ZBS), Tarlong-Taodonggou (TL-TDG), and Dalongkou (DLK) areas, ~100 km apart. The lower QZJ LC overlies a regional unconformity, consists of conglomerate at ZBS at foothills of ancestral north Tianshan and Calcisol, mudrock, sandstone, and conglomerate at TL-TDG andDLK in the basin, and is 1-10s m thick. The basinal deposits are upward-fining meandering stream deposits. In ZBS, fining-upward successions from imbricated boulder–pebble conglomerates to minor sandstones with erosional bases are braided stream deposits.Of 135 randomly-counted cobbles and boulders, 80% are faceted penta-, hexa-, and hepta-hedrons with rounded edges; 75% have atleast one flat face; 60% one concave face (60%); 93% smooth, shiny, and smeared faces; 56% 1–3 sets of parallel to non-parallel striations; and 57% one or more grinding pits, indicating a glacial origin. In contrast, the upper QZJ LC is 60-160 m thick in the basinand 205 m in ZBS. Basinal deposits consist of massive mudstone with a consistent silt-size distribution, interspersed with lenticular upward fining conglomerate to sandstone, interpreted as loess and ephemeral braided stream deposits, respectively. In ZBS, the upper QZJ LC contains mainly upward fining conglomerate–sandstone successions of coarse-grained meandering stream deposits.Few ostracod-bearing shales and well rounded and cross-stratified sandstones are lacustrine and eolian deposits, respectively.Gravels are mainly pebble–granule. 22 counted cobbles are similar to those in lower QZJ and 77% have 1–3 sets of striations, suggesting a dominantly proglacial fluvial setting. Petrified woods with distinct frost rings are common in the QZJ, indicating a freezing upland condition. The basal unconformity signifies tectonic uplift and erosion during closure of Paleo-Asian Ocean. Growth of north Tianshan in an icehouse climate promoted formation of alpine glaciers, which supplied copious fluvial sediments of the lower QZJ.Glacial retreat exposed previous sediments to source the loess accumulated in the basin, but proglacial fluvial deposition persisted inZBS until early Wuchiapingian. 
    more » « less