Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Isolated pan-chelydrid turtle shell fragments are common in Late Cretaceous and early Paleocene sediments across western North America, but more complete and associated specimens are rare, obfuscating our understanding of the group’s early evolution. Here we describe a new genus and species,Tavachelydra stevensoni, of stem-chelydrid turtle from the early Paleocene of the Denver Formation (Danian, Puercan I and II) of Colorado based on complete shells, associated pelvic material, and referred cranial material. Our phylogenetic analysis placesT. stevensonias the immediate sister to crown chelydrids based on, among others, a purely ligamentous attachment of the plastron and carapace. The costiform process of the nuchal, an important character complex in chelydroid turtles, shows variation in either ending in peripheral II or III. TheT. stevensonimaterial was mostly found in laminated fine-grained deposits, suggesting this taxon inhabited ponded-water environments. The referred cranial material shows broad triturating surfaces indicating a durophagous diet, further underscoring durophagy as an important feeding strategy during the early Paleocene.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Abstract Hutchemys rememdiumis a poorly understood softshell turtle (Trionychidae) from the mid Paleocene of the Williston Basin of North America previously known only from postcranial remains. A particularly rich collection of previously undescribed material from the Tiffanian 4 North American Land Mammal Age (NALMA) of North Dakota is here presented consisting of numerous shells that document new variation, some non-shell postcrania, and cranial remains, which are described based on 3D models extracted from micro-CT data. Although the observed shell variation weakens previously noted differences with the younger speciesHutchemys arctochelysfrom the Clarkforkian NALMA, the two taxa are still recognized as distinct. Parsimony and Bayesian phylogenetic analyses reaffirm the previously challenged placement ofHutchemys rememdiumwithin the cladePlastomenidae, mostly based on novel observations of cranial characters made possible by the new material and the micro-CT data. The new topology supports the notion that the well-ossified plastron of plastomenids originated twice in parallel near the Cretaceous/Paleogene boundary, once in theHutchemyslineage and once in theGilmoremys/Plastomenuslineage.Hutchemys rememdiumis notable for being the only documented species of trionychid in the mid Paleocene of the Williston Basin. The presence of multiple individuals in a carbonaceous claystone indicates this taxon lived in swamps and lakes and its expanded triturating surface suggests it had a durophagous diet.more » « less
-
Abstract The Periptychidae, an extinct group of archaic ungulates (‘condylarths’), were the most speciose eutherian mammals in the earliest Paleocene of North America, epitomizing mammalian ascendency after the Cretaceous–Paleogene (K–Pg) mass extinction. Although periptychids are mostly known from fragmentary gnathic remains, the Corral Bluffs area within the Denver Basin, Colorado, has yielded numerous exceptionally well-preserved mammalian fossils, including periptychids, from the earliest Paleocene. Here we describe a partial cranium and articulated dentaries plus an additional unassociated dentary fragment of a small-bodied (~273–455 g) periptychid from ca. 610 thousand years after the K–Pg mass extinction (Puercan 2 North American Land Mammal ‘age’) at Corral Bluffs. Based on these new fossils we erectMilitocodon lydaegen. et sp. nov. The dentition ofM. lydaeexhibits synapomorphies that diagnose the Conacodontinae, but it is plesiomorphic relative toOxyacodon, resembling putatively basal periptychids likeMimatutaandMaioranain several dental traits. As such, we interpretM. lydaeas a basal conacodontine. Its skull anatomy does not reveal clear periptychid synapomorphies and instead resembles that of arctocyonids and other primitive eutherians.M. lydaefalls along a dental morphocline from basal periptychids to derived conacodontines, which we hypothesize reflects a progressive, novel modification of the hypocone to enhance orthal shearing and crushing rather than grinding mastication. The discovery and thorough descriptions and comparisons of the partialM. lydaeskull represent an important step toward unraveling the complex evolutionary history of periptychid mammals.more » « less
-
Abstract Saxochelys gilbertiis a baenid turtle from the Late Cretaceous Hell Creek Formation of the United States of America known from cranial, shell, and other postcranial material. Baenid turtles are taxonomically diverse and common fossil elements within Late Cretaceous through Eocene faunas. Detailed anatomical knowledge is critical to understanding the systematics and morphological evolution of the group. This is particularly important as baenids represent an important group of continental vertebrates that survived the mass extinction event associated with the Cretaceous/Paleogene boundary. High-resolution micro-computed tomography scanning of the holotype skull reveals additional anatomical details for the already well-knownSaxochelys gilberti. This includes the revision of some anatomical statements from the original description, but also detailed knowledge on internal anatomical features of the braincase and the description of a well-preserved axis (cervical vertebra 2). Our new detailed description and previous work on the shell and postcrania makeSaxochelysone of the best-described, nearly complete baenid turtles, which are often only known from either isolated shell or cranial material. A revised phylogenetic analysis confirms the position ofSaxochelys gilbertias a derived baenid (Eubaeninae) more closely related toBaena arenosathan toEubaena cephalica.more » « less
-
Alongside the Chicxulub meteorite impact, Deccan volcanism is considered a primary trigger for the Cretaceous–Paleogene (K–Pg) mass extinction. Models suggest that volcanic outgassing of carbon and sulfur—potent environmental stressors—drove global temperature change, but the relative timing, duration, and magnitude of such change remains uncertain. Here, we use the organic paleothermometer MBT′5meand the carbon-isotope composition of two K–Pg-spanning lignites from the western Unites States, to test models of volcanogenic air temperature change in the ~100 kyr before the mass extinction. Our records show long-term warming of ~3°C, probably driven by Deccan CO2emissions, and reveal a transient (<10 kyr) ~5°C cooling event, coinciding with the peak of the Poladpur “pulse” of Deccan eruption ~30 kyr before the K–Pg boundary. This cooling was likely caused by the aerosolization of volcanogenic sulfur. Temperatures returned to pre-event values before the mass extinction, suggesting that, from the terrestrial perspective, volcanogenic climate change was not the primary cause of K–Pg extinction.more » « less
-
Mass extinctions are major influences on both the phylogenetic structure of the modern biota and our ability to reconstruct broad-based patterns of evolutionary history. The most recent mass extinction is also the most famous—that which implicates a bolide impact in defining the Cretaceous/Palaeogene boundary (K/Pg). Although the biotic effects of this event receive intensive scrutiny, certain ecologically important and diverse groups remain woefully understudied. One such group is the freshwater ray-finned fishes (Actinopterygii). These fish represent 25% of modern vertebrate diversity, yet the isolated and fragmentary nature of their K/Pg fossil record limits our understanding of their diversity dynamics across this event. Here, we address this problem using diversification analysis of molecular-based phylogenies alongside a morphotype analysis of fossils recovered from a unique site in the Denver Basin of western North America that provides unprecedented K/Pg resolution. Our results reveal previously unrecognized signals of post-K/Pg diversification in freshwater clades and suggest that the change was driven by localized and sporadic patterns of extinction. Supported inferences regarding the effects of the K/Pg event on freshwater fish also inform our expectations of how freshwater faunas might recover from the current biodiversity crisis.more » « less
An official website of the United States government
