Abstract Isolated pan-chelydrid turtle shell fragments are common in Late Cretaceous and early Paleocene sediments across western North America, but more complete and associated specimens are rare, obfuscating our understanding of the group’s early evolution. Here we describe a new genus and species,Tavachelydra stevensoni, of stem-chelydrid turtle from the early Paleocene of the Denver Formation (Danian, Puercan I and II) of Colorado based on complete shells, associated pelvic material, and referred cranial material. Our phylogenetic analysis placesT. stevensonias the immediate sister to crown chelydrids based on, among others, a purely ligamentous attachment of the plastron and carapace. The costiform process of the nuchal, an important character complex in chelydroid turtles, shows variation in either ending in peripheral II or III. TheT. stevensonimaterial was mostly found in laminated fine-grained deposits, suggesting this taxon inhabited ponded-water environments. The referred cranial material shows broad triturating surfaces indicating a durophagous diet, further underscoring durophagy as an important feeding strategy during the early Paleocene. 
                        more » 
                        « less   
                    
                            
                            The cranial and postcranial morphology of Hutchemys rememdium and its impact on the phylogenetic relationships of Plastomenidae (Testudinata, Trionychidae)
                        
                    
    
            Abstract Hutchemys rememdiumis a poorly understood softshell turtle (Trionychidae) from the mid Paleocene of the Williston Basin of North America previously known only from postcranial remains. A particularly rich collection of previously undescribed material from the Tiffanian 4 North American Land Mammal Age (NALMA) of North Dakota is here presented consisting of numerous shells that document new variation, some non-shell postcrania, and cranial remains, which are described based on 3D models extracted from micro-CT data. Although the observed shell variation weakens previously noted differences with the younger speciesHutchemys arctochelysfrom the Clarkforkian NALMA, the two taxa are still recognized as distinct. Parsimony and Bayesian phylogenetic analyses reaffirm the previously challenged placement ofHutchemys rememdiumwithin the cladePlastomenidae, mostly based on novel observations of cranial characters made possible by the new material and the micro-CT data. The new topology supports the notion that the well-ossified plastron of plastomenids originated twice in parallel near the Cretaceous/Paleogene boundary, once in theHutchemyslineage and once in theGilmoremys/Plastomenuslineage.Hutchemys rememdiumis notable for being the only documented species of trionychid in the mid Paleocene of the Williston Basin. The presence of multiple individuals in a carbonaceous claystone indicates this taxon lived in swamps and lakes and its expanded triturating surface suggests it had a durophagous diet. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2317666
- PAR ID:
- 10509652
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Swiss Journal of Palaeontology
- Volume:
- 143
- Issue:
- 1
- ISSN:
- 1664-2376
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Although trionychians have a rich fossil record, much of their fossil diversity is known from the Cretaceous and Paleogene, and little is known about their evolutionary history in the Neogene. We here describe cranial and shell material of trionychians from the Early Miocene Moghra Formation of Egypt that we attribute to a new carettochelyid taxon,Allaeochelys meylanisp. nov., and to theTrionyxlineage.Allaeochelys meylanisp. nov. fills a temporal gap between previously described taxa and exhibits a series of unique features, including greatly thickened cranial bones, a broad bony wall posterior to the orbit, a large fossa formed by the maxilla and premaxilla at the anterior third of the triturating surface, and a medial process on peripheral II.Allaeochelys meylanisp. nov. also documents the oldest occurrence ofCarettochelyidaeon the Afro-Arabian continent, while theTrionyxmaterial reported herein provides unambiguous evidence for the presence of this lineage on the Afro-Arabian continent no later than the Early Miocene.more » « less
- 
            Abstract Saxochelys gilbertiis a baenid turtle from the Late Cretaceous Hell Creek Formation of the United States of America known from cranial, shell, and other postcranial material. Baenid turtles are taxonomically diverse and common fossil elements within Late Cretaceous through Eocene faunas. Detailed anatomical knowledge is critical to understanding the systematics and morphological evolution of the group. This is particularly important as baenids represent an important group of continental vertebrates that survived the mass extinction event associated with the Cretaceous/Paleogene boundary. High-resolution micro-computed tomography scanning of the holotype skull reveals additional anatomical details for the already well-knownSaxochelys gilberti. This includes the revision of some anatomical statements from the original description, but also detailed knowledge on internal anatomical features of the braincase and the description of a well-preserved axis (cervical vertebra 2). Our new detailed description and previous work on the shell and postcrania makeSaxochelysone of the best-described, nearly complete baenid turtles, which are often only known from either isolated shell or cranial material. A revised phylogenetic analysis confirms the position ofSaxochelys gilbertias a derived baenid (Eubaeninae) more closely related toBaena arenosathan toEubaena cephalica.more » « less
- 
            Early Paleocene floral communities were substantially restructured as a result of the Cretaceous-Paleogene (K-Pg) mass extinction approximately 66.0 Ma. While events immediately adjacent to the K-Pg boundary have been extensively studied, comparatively little research has looked at long-term terrestrial ecosystem recovery during the early Paleocene. The San Juan Basin (SJB), located in northwestern New Mexico, preserves an exceptional, large, and well-dated early Paleocene plant record making it an ideal location to study long-term recovery of early Paleocene terrestrial ecosystems. Here we investigate early Paleocene terrestrial ecosystem change using a coupled high-resolution plant and δ13C record from the SJB. Plant macrofossils were collected from the lower Paleocene Ojo Alamo Sandstone and lower Nacimiento Formation in the SJB spanning the initial ~1.5 myr of the Paleocene. Macrofloral extinction, origination, and net diversification rates were simultaneously estimated using the Pradel capture-mark-recapture (CMR) model from 66.0 – 64.5 Ma with 100 Kyr time-steps. Two intervals of decreasing floral diversity were identified: a short interval at ~65.5 Ma and a prolonged interval from ~65.2 – 64.7 Ma. Two short intervals of rapidly increasing floral diversity were also identified: the first at ~65.3 Ma and the second at ~64.6 Ma. The onset of both intervals of decreasing floral diversity are coeval with a -1.5 to -2.5 ‰ bulk organic δ13C excursion. We also applied the Pradel CMR model to contemporaneous macrofloras from the Denver Basin (DB), Colorado and the Williston Basin (WB), North Dakota and Montana. The floral diversity patterns estimated from the DB and WB indicate intervals of increasing and decreasing floral diversity that are coeval with the same intervals identified in the SJB. This suggests a regional driver in patterns of floral diversity change during the early Paleocene in western North America, which reflects prolonged terrestrial ecosystem instability following the K-Pg mass extinction.more » « less
- 
            With the dawn of the Paleogene, the mammalian survivors of the Cretaceous–Paleogene mass extinction, 66 million years ago, found themselves in an emptied landscape. Within a million years of the bolide impact, placental mammals reached a diversity and abundance never seen during the Age of Dinosaurs. The North American ‘condylarths’ were amongst the first mammals to diversify during the early Paleogene and are often considered the ancestral ‘stock’ from which other euungulate groups evolved. Amongst these, Phenacodontidae are often regarded to lie at the base of the perissodactyl family tree, but their phylogenetic position, and that of other ‘condylarths’, remain contentious. Tetraclaenodon, a medium-sized herbivorous phenacodontid from the Torrejonian (~64 to ~62 Ma) of North America is generally recognized as the oldest member of Phenacodontidae, and thus is instrumental for untangling the evolutionary relationships of ‘condylarths’ and perissodactyls. Here we present new information on Tetraclaenodon based on a description of new and previously known fossil material from the San Juan Basin of New Mexico, U.S.A., which we studied using high-resolution computed tomography (CT) scanning. From CT scans of the cranium, we segmented the brain endocast, which is relatively small and smooth (lissencephalic), similar to that of other Paleocene mammals. The petrosal lobules, which are involved in eye movement coordination, are small. The semi-circular canals associated with balance, provide an agility score of 3 indicating that Tetraclaenodon was probably moderately agile, similar to the extant raccoon dog or the aardwolf. A multivariate analysis of tarsal measurements for a sample of Paleocene and extant mammals, which informs locomotor style, indicates that Tetraclaenodon was most suited to terrestrial locomotion. This is in line with anatomical and myological features of the limbs of Tetraclaenodon and other phenacodontids, early perissodactyls and extant mammals. These findings contradict previous studies that designated Tetraclaenodon as a scansorial mammal, capable of habitually climbing trees. Our results shed light on the locomotory adaptations of Tetraclaenodon in comparison to more cursorial phenacodontids and perissodactyls, such as Phenacodus and Hyrachyus. The earliest member of the perissodactyl stem lineage apparently lacked the more cursorial adaptations of their relatives in the late Paleocene and onwards.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
