skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2318576

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Aluminum scandium alloys and their intermetallic phases have arisen as potential candidates for the next generation of electrical interconnects. In this work, we measure the in-plane thermal conductivity and electron–phonon coupling factor of aluminum scandium alloy thin films deposited at different temperatures, where the temperature is used to control the grain size and volume fraction of the Al3Sc intermetallic phase. As the Al3Sc intermetallic formation increases with higher deposition temperature, we measure increasing in-plane thermal conductivity and a decrease in the electron–phonon coupling factor, which corresponds to an increase in grain size. Our findings demonstrate the role that chemical ordering from the formation of the intermetallic phase has on thermal transport.

     
    more » « less
    Free, publicly-accessible full text available May 13, 2025
  2. Atomic layer deposition (ALD) of ruthenium (Ru) is being investigated for next generation interconnects and conducting liners for copper metallization. However, integration of ALD Ru with diffusion barrier refractory metal nitrides, such as tantalum nitride (TaN), continues to be a challenge due to its slow nucleation rates. Here, we demonstrate that an ultraviolet-ozone (UV-O3) pretreatment of TaN leads to an oxidized surface that favorably alters the deposition characteristics of ALD Ru from islandlike to layer-by-layer growth. The film morphology and properties are evaluated via spectroscopic ellipsometry, atomic force microscopy, electrical sheet resistance measurements, and thermoreflectance. We report a 1.83 nm continuous Ru film with a roughness of 0.19 nm and a sheet resistance of 10.8 KΩ/□. The interface chemistry between TaN and Ru is studied by x-ray photoelectron spectroscopy. It is shown that UV-O3 pretreatment, while oxidizing TaN, enhances Ru film nucleation and limits further oxidation of the underlying TaN during ALD. An oxygen “gettering” mechanism by TaN is proposed to explain reduced oxygen content in the Ru film and higher electrical conductivity compared to Ru deposited on native-TaN. This work provides a simple and effective approach using UV-O3 pretreatment for obtaining sub-2 nm, smooth, and conducting Ru films on TaN surfaces.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  3. Free, publicly-accessible full text available April 1, 2025
  4. Free, publicly-accessible full text available February 20, 2025