Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Advancements in nanofabrication processes have propelled nonvolatile phase change materials (PCMs) beyond storage‐class applications. They are now making headway in fields such as photonic integrated circuits (PIC), free‐space optics, and plasmonics. This shift is owed to their distinct electrical, optical, and thermal properties between their different atomic structures, which can be reversibly switched through thermal stimuli. However, the reliability of PCM‐based optical components is not yet on par with that of storage‐class devices. This is in part due to the challenges in maintaining a uniform temperature distribution across the PCM volume during phase transformation, which is essential to mitigate stress and element segregation as the device size exceeds a few micrometers. Understanding thermal transport in PCM‐based devices is thus crucial as it dictates not only the durability but also the performance and power consumption of these devices. This article reviews recent advances in the development of PCM‐based photonic devices from a thermal transport perspective and explores potential avenues to enhance device reliability. The aim is to provide insights into how PCM‐based technologies can evolve beyond storage‐class applications, maintain their functionality, and achieve longer lifetimes.more » « less
- 
            Understanding the thermal conductivity of chromium-doped V2O3 is crucial for optimizing the design of selectors for memory and neuromorphic devices. We utilized the time-domain thermoreflectance technique to measure the thermal conductivity of chromium-doped V2O3 across varying concentrations, spanning the doping-induced metal–insulator transition. In addition, different oxygen stoichiometries and film thicknesses were investigated in their crystalline and amorphous phases. Chromium doping concentration (0%–30%) and the degree of crystallinity emerged as the predominant factors influencing the thermal properties, while the effect of oxygen flow (600–1400 ppm) during deposition proved to be negligible. Our observations indicate that even in the metallic phase of V2O3, the lattice contribution is the dominant factor in thermal transport with no observable impact from the electrons on heat transport. Finally, the thermal conductivity of both amorphous and crystalline V2O3 was measured at cryogenic temperatures (80–450 K). Our thermal conductivity measurements as a function of temperature reveal that both phases exhibit behavior similar to amorphous materials, indicating pronounced phonon scattering effects in the crystalline phase of V2O3.more » « less
- 
            Aluminum scandium alloys and their intermetallic phases have arisen as potential candidates for the next generation of electrical interconnects. In this work, we measure the in-plane thermal conductivity and electron–phonon coupling factor of aluminum scandium alloy thin films deposited at different temperatures, where the temperature is used to control the grain size and volume fraction of the Al3Sc intermetallic phase. As the Al3Sc intermetallic formation increases with higher deposition temperature, we measure increasing in-plane thermal conductivity and a decrease in the electron–phonon coupling factor, which corresponds to an increase in grain size. Our findings demonstrate the role that chemical ordering from the formation of the intermetallic phase has on thermal transport.more » « less
- 
            Atomic layer deposition (ALD) of ruthenium (Ru) is being investigated for next generation interconnects and conducting liners for copper metallization. However, integration of ALD Ru with diffusion barrier refractory metal nitrides, such as tantalum nitride (TaN), continues to be a challenge due to its slow nucleation rates. Here, we demonstrate that an ultraviolet-ozone (UV-O3) pretreatment of TaN leads to an oxidized surface that favorably alters the deposition characteristics of ALD Ru from islandlike to layer-by-layer growth. The film morphology and properties are evaluated via spectroscopic ellipsometry, atomic force microscopy, electrical sheet resistance measurements, and thermoreflectance. We report a 1.83 nm continuous Ru film with a roughness of 0.19 nm and a sheet resistance of 10.8 KΩ/□. The interface chemistry between TaN and Ru is studied by x-ray photoelectron spectroscopy. It is shown that UV-O3 pretreatment, while oxidizing TaN, enhances Ru film nucleation and limits further oxidation of the underlying TaN during ALD. An oxygen “gettering” mechanism by TaN is proposed to explain reduced oxygen content in the Ru film and higher electrical conductivity compared to Ru deposited on native-TaN. This work provides a simple and effective approach using UV-O3 pretreatment for obtaining sub-2 nm, smooth, and conducting Ru films on TaN surfaces.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
