skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2318773

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Optimal control theory extending from the calculus of variations has not been used to study the wind turbine power system (WTPS) control problem, which aims at achieving two targets: (i) maximizing power generation in lower wind speed conditions; and (ii) maintaining the output power at the rated level in high wind speed conditions. A lack of an optimal control framework for the WTPS (i.e., no access to actual optimal control trajectories) reduces optimal control design potential and prevents competing control methods of WTPSs to have a reference control solution for comparison. In fact, the WTPS control literature often relies on reduced and linearized models of WTPSs, and avoids the nonsmoothness present in the system during transitions between different conditions of operation. In this paper, we introduce a novel optimal control framework for the WTPS control problem. We use in our formulation a recent accurate, nonlinear differential–algebraic equation (DAE) model of WTPSs, which we then generalize over all wind speed ranges using nonsmooth functions. We also use developments in nonsmooth optimal control theory to take into account nonsmoothness present in the system. We implement this new WTPS optimal control approach to solve the problem numerically, including (i) different wind speed profiles for testing the system response; (ii) real-world wind data; and (iii) a comparison with smoothing and naive approaches. Results show the effectiveness of the proposed approach. 
    more » « less
    Free, publicly-accessible full text available January 15, 2026
  2. We extend the sensitivity rank condition (SERC), which tests for identifiability of smooth input-output systems, to a broader class of systems. Particularly, we build on our recently developed lexicographic SERC (L-SERC) theory and methods to achieve an identifiability test for differential-algebraic equation (DAE) systems for the first time, including nonsmooth systems. Additionally, we develop a method to determine the identifiable and non-identifiable parameter sets. We show how this new theory can be used to establish a (non-local) parameter reduction procedure and we show how parameter estimation problems can be solved. We apply the new methods to problems in wind turbine power systems and glucose-insulin kinetics. 
    more » « less
    Free, publicly-accessible full text available December 23, 2025