skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 23, 2025

Title: Parameter Identifiability and Reduction for Smooth and Nonsmooth Differential-Algebraic Equation Systems
We extend the sensitivity rank condition (SERC), which tests for identifiability of smooth input-output systems, to a broader class of systems. Particularly, we build on our recently developed lexicographic SERC (L-SERC) theory and methods to achieve an identifiability test for differential-algebraic equation (DAE) systems for the first time, including nonsmooth systems. Additionally, we develop a method to determine the identifiable and non-identifiable parameter sets. We show how this new theory can be used to establish a (non-local) parameter reduction procedure and we show how parameter estimation problems can be solved. We apply the new methods to problems in wind turbine power systems and glucose-insulin kinetics.  more » « less
Award ID(s):
2318773 2318772
PAR ID:
10582562
Author(s) / Creator(s):
; ;
Publisher / Repository:
Institute of Electrical and Electronics Engineers Inc.
Date Published:
Journal Name:
IEEE Control Systems Letters
Volume:
8
ISSN:
2475-1456
Page Range / eLocation ID:
3159 to 3164
Subject(s) / Keyword(s):
Differential algebraic systems nonlinear systems identification hybrid systems.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper describes a geometric approach to parameter identifiability analysis in models of power systems dynamics. When a model of a power system is to be compared with measurements taken at discrete times, it can be interpreted as a mapping from parameter space into a data or prediction space. Generically, model mappings can be interpreted as manifolds with dimensionality equal to the number of structurally identifiable parameters. Empirically it is observed that model mappings often correspond to bounded manifolds. We propose a new definition of practical identifiability based the topological definition of a manifold with boundary. In many ways, our proposed definition extends the properties of structural identifiability. We construct numerical approximations to geodesics on the model manifold and use the results, combined with insights derived from the mathematical form of the equations, to identify combinations of practically identifiable and unidentifiable parameters. We give several examples of application to dynamic power systems models. 
    more » « less
  2. The premise of identifiable and causal representation learning is to improve the current representation learning paradigm in terms of generalizability or robustness. Despite recent progress in questions of identifiability, more theoretical results demonstrating concrete advantages of these methods for downstream tasks are needed. In this paper, we consider the task of intervention extrapolation: predicting how interventions affect an outcome, even when those interventions are not observed at training time, and show that identifiable representations can provide an effective solution to this task even if the interventions affect the outcome non-linearly. Our setup includes an outcome variable Y , observed features X, which are generated as a non-linear transformation of latent features Z, and exogenous action variables A, which influence Z. The objective of intervention extrapolation is then to predict how interventions on A that lie outside the training support of A affect Y . Here, extrapolation becomes possible if the effect of A on Z is linear and the residual when regressing Z on A has full support. As Z is latent, we combine the task of intervention extrapolation with identifiable representation learning, which we call Rep4Ex: we aim to map the observed features X into a subspace that allows for non-linear extrapolation in A. We show that the hidden representation is identifiable up to an affine transformation in Z-space, which, we prove, is sufficient for intervention extrapolation. The identifiability is characterized by a novel constraint describing the linearity assumption of A on Z. Based on this insight, we propose a flexible method that enforces the linear invariance constraint and can be combined with any type of autoencoder. We validate our theoretical findings through a series of synthetic experiments and show that our approach can indeed succeed in predicting the effects of unseen interventions. 
    more » « less
  3. Differential equation models are crucial to scientific processes across many disciplines, and the values of model parameters are important for analyzing the behaviour of solutions. Identifying these values is known as a parameter estimation, a type of inverse problem, which has applications in areas that include industry, finance and biomedicine. A parameter is called globally identifiable if its value can be uniquely determined from the input and output functions. Checking the global identifiability of model parameters is a useful tool when exploring the well-posedness of a given model. This problem has been intensively studied for ordinary differential equation models, where theory, several efficient algorithms and software packages have been developed. A comprehensive theory for PDEs has hitherto not been developed due to the complexity of initial and boundary conditions. Here, we provide theory and algorithms, based on differential algebra, for testing identifiability of polynomial PDE models. We showcase this approach on PDE models arising in the sciences. 
    more » « less
  4. Proportion variables, also known as compositional data, are very common in ecology. Unfortunately, few scientists are aware of how compositional data, when used as covariates, can adversely impact statistical analysis. We describe here how proportion covariates result in multicollinearity and parameter identifiability problems. Using simulated data on bird species richness as a function of land use, we show how these problems manifest when fitting a wide range of models in R, both in a frequentist and Bayesian framework. In particular, we show that similar models can often generate substantially different parameter estimates, leading to very different conclusions. Dropping a covariate or the intercept from the model can solve the multicollinearity and parameter identifiability problems. Unfortunately, these solutions do not fix the inherent challenges associated with interpreting parameter estimates. To this end, we propose focusing the interpretation on the difference of slope parameters to avoid the inherent unidentifiability of individual parameters. We also propose conditional plots with two‐axes and marginal plots as visualization techniques that can help users better interpret their modeling results. We illustrate these problems and proposed solutions using empirical data from the North American Breeding Bird Survey. The practical and straightforward approaches suggested in this article will help the fitting of linear models and interpretation of its results when some of the covariates are proportions. 
    more » « less
  5. This paper presents an algorithm to geometrically characterize inertial parameter identifiability for an articulated robot. The geometric approach tests identifiability across the infinite space of configurations using only a finite set of conditions and without approximation. It can be applied to general open-chain kinematic trees ranging from industrial manipulators to legged robots, and it is the first solution for this broad set of systems that is provably correct. The high-level operation of the algorithm is based on a key observation: Undetectable changes in inertial parameters can be represented as sequences of inertial transfers across the joints. Drawing on the exponential parameterization of rigid-body kinematics, undetectable inertial transfers are analyzed in terms of observability from linear systems theory. This analysis can be applied recursively, and lends an overall complexity of O( N) to characterize parameter identifiability for a system of N bodies. Matlab source code for the new algorithm is provided. 
    more » « less