skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2318861

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract While there is a diversity of approaches for modeling phytoplankton blooms, their accuracy in predicting the onset and manifestation of a bloom is still lagging behind what is needed to support effective management. We outline a framework that integrates trait theory and ecosystem modeling to improve bloom prediction. This framework builds on the concept that the phenology of blooms is determined by the dynamic interaction between the environment and traits within the phytoplankton community. Phytoplankton groups exhibit a collection of traits that govern the interplay of processes that ultimately control the phases of bloom initiation, maintenance, and collapse. An example of process‐trait mapping is used to demonstrate a more consistent approach to bloom model parameterization that allows better alignment with models and laboratory‐ and ecosystem‐scale datasets. Further approaches linking statistical‐mechanistic models to trait parameter databases are discussed as a way to help optimize models to better simulate bloom phenology and allow them to support a wider range of management needs. 
    more » « less
    Free, publicly-accessible full text available August 13, 2026
  2. Abstract Near‐term ecological forecasting can be used to improve operational resource management in freshwater ecosystems. Here, we developed a framework that uses water temperature forecasting as a tool to predict the migrations of Atlantic salmon (Salmo salar) and European eel (Anguilla anguilla) between freshwater and the sea. We used historical observations of lake water temperature and fish migrations from an internationally important long‐term monitoring site (the Burrishoole catchment, Ireland) to generate daily probabilistic predictions (0%–100%) of when relatively large numbers of fish migrate. For this, we produced daily lake water temperature forecasts that extended up to 34 days into the future using Forecasting Lake and Reservoir Ecosystems (FLARE), an open‐source ensemble‐based forecasting system. We used this system to forecast lake water temperature conditions associated with percentile‐based fish migrations. Two metrics, P66 and P95, were used to indicate days with migrations in excess of 66% and 95%, respectively, of the historical daily fish counts. The results were first validated against water temperature observations, with an overall root mean squared error (RMSE) of 0.97°C. Our forecasts outperformed two other possible water temperature forecasting approaches, using site climatology (1.36°C) and site persistence (1.19°C). The predictions for fish migrations performed better for the P66 metric than for the more extreme P95 metric based on the continuous ranked probability score (CRPS), and the best results were obtained for the salmon downstream migration. This forecasting approach with quantified uncertainty levels has the potential to assist decision making, especially in the face of increased risks for these species. We conclude by discussing the scalability of the framework to other settings as a tool aimed at supporting management practices in real time. 
    more » « less
  3. Abstract Data science skills (e.g., analyzing, modeling, and visualizing large data sets) are increasingly needed by undergraduates in the life sciences. However, a lack of both student and instructor confidence in data science skills presents a barrier to their inclusion in undergraduate curricula. To reduce this barrier, we developed four teaching modules in the Macrosystems EDDIE (for environmental data-driven inquiry and exploration) program to introduce undergraduate students and instructors to ecological forecasting, an emerging subdiscipline that integrates multiple data science skills. Ecological forecasting aims to improve natural resource management by providing future predictions of ecosystems with uncertainty. We assessed module efficacy with 596 students and 26 instructors over 3 years and found that module completion increased students’ confidence in their understanding of ecological forecasting and instructors’ likelihood to work with long-term, high-frequency sensor network data. Our modules constitute one of the first formalized data science curricula on ecological forecasting for undergraduates. 
    more » « less
  4. Abstract Phytoplankton blooms create harmful toxins, scums, and taste and odor compounds and thus pose a major risk to drinking water safety. Climate and land use change are increasing the frequency and severity of blooms, motivating the development of new approaches for preemptive, rather than reactive, water management. While several real-time phytoplankton forecasts have been developed to date, none are both automated and quantify uncertainty in their predictions, which is critical for manager use. In response to this need, we outline a framework for developing the first automated, real-time lake phytoplankton forecasting system that quantifies uncertainty, thereby enabling managers to adapt operations and mitigate blooms. Implementation of this system calls for new, integrated ecosystem and statistical models; automated cyberinfrastructure; effective decision support tools; and training for forecasters and decision makers. We provide a research agenda for the creation of this system, as well as recommendations for developing real-time phytoplankton forecasts to support management. 
    more » « less
  5. Abstract Despite the growing use of Aquatic Ecosystem Models for lake modeling, there is currently no widely applicable framework for their configuration, calibration, and evaluation. Calibration is generally based on direct data comparison of observed versus modeled state variables using standard statistical techniques, however, this approach may not give a complete picture of the model's ability to capture system‐scale behavior that is not easily perceivable in observations, but which may be important for resource management. The aim of this study is to compare the performance of “naïve” calibration and a “system‐inspired” calibration, an approach that augments the standard state‐based calibration with a range of system‐inspired metrics (e.g., thermocline depth, metalimnetic oxygen minima), to increase the coherence between the simulated and natural ecosystems. A coupled physical‐biogeochemical model was applied to a focal site to simulate two key state‐variables: water temperature and dissolved oxygen. The model was calibrated according to the new system‐inspired modeling convention, using formal calibration techniques. There was an improvement in the simulation using parameters optimized on the additional metrics, which helped to reduce uncertainty predicting aspects of the system relevant to reservoir management, such as the occurrence of the metalimnetic oxygen minima. Extending the use of system‐inspired metrics when calibrating models has the potential to improve model fidelity for capturing more complex ecosystem dynamics. 
    more » « less
  6. Abstract Temperate reservoirs and lakes worldwide are experiencing decreases in ice cover, which will likely alter the net balance of gross primary production (GPP) and respiration (R) in these ecosystems. However, most metabolism studies to date have focused on summer dynamics, thereby excluding winter dynamics from annual metabolism budgets. To address this gap, we analyzed 6 years of year‐round high‐frequency dissolved oxygen data to estimate daily rates of net ecosystem production (NEP), GPP, and R in a eutrophic, dimictic reservoir that has intermittent ice cover. Over 6 years, the reservoir exhibited slight heterotrophy during both summer and winter. We found winter and summer metabolism rates to be similar: summer NEP had a median rate of −0.06 mg O2L−1 day−1(range: −15.86 to 3.20 mg O2L−1 day−1), while median winter NEP was −0.02 mg O2L−1 day−1(range: −8.19 to 0.53 mg O2L−1 day−1). Despite large differences in the duration of ice cover among years, there were minimal differences in NEP among winters. Overall, the inclusion of winter data had a limited effect on annual metabolism estimates in a eutrophic reservoir, likely due to short winter periods in this reservoir (ice durations 0–35 days), relative to higher‐latitude lakes. Our work reveals a smaller difference between winter and summer NEP than in lakes with continuous ice cover. Ultimately, our work underscores the importance of studying full‐year metabolism dynamics in a range of aquatic ecosystems to help anticipate the effects of declining ice cover across lakes worldwide. 
    more » « less
  7. Free, publicly-accessible full text available July 31, 2026
  8. Metal and nutrient loads were calculated from 2019-2024 from the inflow stream to Falling Creek Reservoir (FCR), a drinking water reservoir located in Vinton, Virginia, USA. The reservoir is owned and operated by the Western Virginia Water Authority and is managed as a secondary drinking-water source for the city of Roanoke, VA. Only Fe, Mn, and nutrients (TN and TP) were analyzed and calculated in 2019. The full suite of metals (Li, Na, Mg, Al, K, Ca, Fe, Mn, Cu, Sr, Ba) and nutrients were analyzed from 2020-2024. The loads that were collected using an ISCO automated sampler located at the main inflow tributary to FCR. Sampling frequency was approximately fortnightly from spring to fall (March - November). Load calculations were performed using the calculated cumulative flow over the sampling period from the ISCO and the analyzed total metal and nutrient concentrations. Please note we are publishing this data package before the nutrient samples have been analyzed, but will be included in later versions. 
    more » « less
  9. Free, publicly-accessible full text available June 1, 2026
  10. Free, publicly-accessible full text available May 19, 2026