Abstract Communicating and interpreting uncertainty in ecological model predictions is notoriously challenging, motivating the need for new educational tools, which introduce ecology students to core concepts in uncertainty communication. Ecological forecasting, an emerging approach to estimate future states of ecological systems with uncertainty, provides a relevant and engaging framework for introducing uncertainty communication to undergraduate students, as forecasts can be used as decision support tools for addressing real‐world ecological problems and are inherently uncertain. To provide critical training on uncertainty communication and introduce undergraduate students to the use of ecological forecasts for guiding decision‐making, we developed a hands‐on teaching module within the Macrosystems Environmental Data‐Driven Inquiry and Exploration (EDDIE;MacrosystemsEDDIE.org) educational program. Our module used an active learning approach by embedding forecasting activities in an R Shiny application to engage ecology students in introductory data science, ecological modeling, and forecasting concepts without needing advanced computational or programming skills. Pre‐ and post‐module assessment data from more than 250 undergraduate students enrolled in ecology, freshwater ecology, and zoology courses indicate that the module significantly increased students' ability to interpret forecast visualizations with uncertainty, identify different ways to communicate forecast uncertainty for diverse users, and correctly define ecological forecasting terms. Specifically, students were more likely to describe visual, numeric, and probabilistic methods of uncertainty communication following module completion. Students were also able to identify more benefits of ecological forecasting following module completion, with the key benefits of using forecasts for prediction and decision‐making most commonly described. These results show promise for introducing ecological model uncertainty, data visualizations, and forecasting into undergraduate ecology curricula via software‐based learning, which can increase students' ability to engage and understand complex ecological concepts.
more »
« less
A modular curriculum to teach undergraduates ecological forecasting improves student and instructor confidence in their data science skills
Abstract Data science skills (e.g., analyzing, modeling, and visualizing large data sets) are increasingly needed by undergraduates in the life sciences. However, a lack of both student and instructor confidence in data science skills presents a barrier to their inclusion in undergraduate curricula. To reduce this barrier, we developed four teaching modules in the Macrosystems EDDIE (for environmental data-driven inquiry and exploration) program to introduce undergraduate students and instructors to ecological forecasting, an emerging subdiscipline that integrates multiple data science skills. Ecological forecasting aims to improve natural resource management by providing future predictions of ecosystems with uncertainty. We assessed module efficacy with 596 students and 26 instructors over 3 years and found that module completion increased students’ confidence in their understanding of ecological forecasting and instructors’ likelihood to work with long-term, high-frequency sensor network data. Our modules constitute one of the first formalized data science curricula on ecological forecasting for undergraduates.
more »
« less
- PAR ID:
- 10548166
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- BioScience
- Volume:
- 75
- Issue:
- 2
- ISSN:
- 0006-3568
- Format(s):
- Medium: X Size: p. 127-138
- Size(s):
- p. 127-138
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ecological forecasting is an emerging approach to estimate the future state of an ecological system with uncertainty, allowing society to better manage ecosystem services. Ecological forecasting is a core mission of the U.S. National Ecological Observatory Network (NEON) and several federal agencies, yet, to date, forecasting training has focused on graduate students, representing a gap in undergraduate ecology curricula. In response, we developed a teaching module for the Macrosystems EDDIE (Environmental Data-Driven Inquiry and Exploration; MacrosystemsEDDIE.org) educational program to introduce ecological forecasting to undergraduate students through an interactive online tool built with R Shiny. To date, we have assessed this module, “Introduction to Ecological Forecasting,” at ten universities and two conference workshops with both undergraduate and graduate students (N = 136 total) and found that the module significantly increased undergraduate students’ ability to correctly define ecological forecasting terms and identify steps in the ecological forecasting cycle. Undergraduate and graduate students who completed the module showed increased familiarity with ecological forecasts and forecast uncertainty. These results suggest that integrating ecological forecasting into undergraduate ecology curricula will enhance students’ abilities to engage and understand complex ecological concepts.more » « less
-
Ecologists are increasingly using macrosystems approaches to understand population, community, and ecosystem dynamics across interconnected spatial and temporal scales. Consequently, integrating macrosystems skills, including simulation modeling and sensor data analysis, into undergraduate and graduate curricula is needed to train future environmental biologists. Through the Macrosystems EDDIE (Environmental Data-Driven Inquiry and Exploration) program, we developed four teaching modules to introduce macrosystems ecology to ecology and biology students. Modules combine high-frequency sensor data from GLEON (Global Lake Ecological Observatory Network) and NEON (National Ecological Observatory Network) sites with ecosystem simulation models. Pre- and post-module assessments of 319 students across 24 classrooms indicate that hands-on, inquiry-based modules increase students’ understanding of macrosystems ecology, including complex processes that occur across multiple spatial and temporal scales. Following module use, students were more likely to correctly define macrosystems concepts, interpret complex data visualizations and apply macrosystems approaches in new contexts. In addition, there was an increase in student’s self-perceived proficiency and confidence using both long-term and high-frequency data; key macrosystems ecology techniques. Our results suggest that integrating short (1–3 h) macrosystems activities into ecology courses can improve students’ ability to interpret complex and non-linear ecological processes. In addition, our study serves as one of the first documented instances for directly incorporating concepts in macrosystems ecology into undergraduate and graduate ecology and biology curricula.more » « less
-
Abstract This mixed‐methods research focused on the implementation of a coordinated distributed experiment (CDE) investigating local adaptation in common milkweed (Asclepias syriaca), a host plant for the monarch butterfly population. Faculty participants were recruited from the Ecological Research as Education Network (EREN) who recruited their former undergraduate students. Quantitative data were drawn from the Milkweed Local Adaptation (MLA) CDE database across the three project years. Qualitative data included faculty survey responses, semi‐structured interviews of faculty and former undergraduates, and review of undergraduate research posters, papers, and curricula using rubrics aligned with 4DEE and Next Generation Science Standards (NGSS) benchmarks. Analysis of the MLA CDE database illustrates a decline in both participating institutions and in counts of milkweed stems over the project (2018–2020). Qualitative data analysis revealed that CDEs: (1) offer opportunities for higher education faculty and their students to be part of research including developing skills of data collection, analysis, and interpretation; (2) have unexpected challenges; and (3) can inspire undergraduate students to develop independent research projects or curricular modules for use in formal 6–12 classrooms. Broader ecological educational implications of our outcomes for higher education faculty and their undergraduate students include: (1) recommendation that faculty members involved ought to be proactively informed about potential challenges and provided with guidance on how to mitigate them; (2) mitigating challenges with model studies to try to estimate the sample size and redundancy likely to produce robust data; and (3) proactive use of the educational network to understand institutional use of the CDE project with undergraduates.more » « less
-
Abstract Conducting ecological research in a way that addresses complex, real‐world problems requires a diverse, interdisciplinary and quantitatively trained ecology and environmental science workforce. This begins with equitably training students in ecology, interdisciplinary science, and quantitative skills at the undergraduate level. Understanding the current undergraduate curriculum landscape in ecology and environmental sciences allows for targeted interventions to improve equitable educational opportunities. Ecological forecasting is a sub‐discipline of ecology with roots in interdisciplinary and quantitative science. We use ecological forecasting to show how ecology and environmental science undergraduate curriculum could be evaluated and ultimately restructured to address the needs of the 21stcentury workforce. To characterize the current state of ecological forecasting education, we compiled existing resources for teaching and learning ecological forecasting at three curriculum levels: online resources; US university courses on ecological forecasting; and US university courses on topics related to ecological forecasting. We found persistent patterns (1) in what topics are taught to US undergraduate students at each of the curriculum levels; and (2) in the accessibility of resources, in terms of course availability at higher education institutions in the United States. We developed and implemented programs to increase the accessibility and comprehensiveness of ecological forecasting undergraduate education, including initiatives to engage specifically with Native American undergraduates and online resources for learning quantitative concepts at the undergraduate level. Such steps enhance the capacity of ecological forecasting to be more inclusive to undergraduate students from diverse backgrounds and expose more students to quantitative training.more » « less