skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2318974

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Program equivalence checking is the task of confirming that two programs have the same behavior on corresponding inputs. We develop a calculus based on symbolic execution and coinduction to check the equivalence of programs in a non-strict functional language. Additionally, we show that our calculus can be used to derive counterexamples for pairs of inequivalent programs, including counterexamples that arise from non-termination. We describe a fully automated approach for finding both equivalence proofs and counterexamples. Our implementation,nebula, proves equivalences of programs written in Haskell. We demonstratenebula’s practical effectiveness at both proving equivalence and producing counterexamples automatically by applyingnebulato existing benchmark properties. 
    more » « less
  2. Principled accountability for autonomous decision-making in uncertain environments requires distinguishing intentional outcomes from negligent designs from actual accidents. We propose analyzing the behavior of autonomous agents through a quantitative measure of the evidence of intentional behavior. We model an uncertain environment as a Markov Decision Process (MDP). For a given scenario, we rely on probabilistic model checking to compute the ability of the agent to influence reaching a certain event. We call this the scope of agency. We say that there is evidence of intentional behavior if the scope of agency is high and the decisions of the agent are close to being optimal for reaching the event. Our method applies counterfactual reasoning to automatically generate relevant scenarios that can be analyzed to increase the confidence of our assessment. In a case study, we show how our method can distinguish between 'intentional' and 'accidental' traffic collisions. 
    more » « less