We study the problem of analyzing the effects of inconsistencies in perception, intent prediction, and decision making among interacting agents. When accounting for these effects, planning is akin to synthesizing policies in uncertain and potentially partially-observable environments. We consider the case where each agent, in an effort to avoid a difficult planning problem, does not consider the inconsistencies with other agents when computing its policy. In particular, each agent assumes that other agents compute their policies in the same way as it does, i.e., with the same objective and based on the same system model. While finding policies on the composed system model, which accounts for the agent interactions, scales exponentially, we efficiently provide quantifiable performance metrics in the form of deltas in the probability of satisfying a given specification. We showcase our approach using two realistic autonomous vehicle case-studies and implement it in an autonomous vehicle simulator.
more »
« less
Analyzing Intentional Behavior in Autonomous Agents under Uncertainty
Principled accountability for autonomous decision-making in uncertain environments requires distinguishing intentional outcomes from negligent designs from actual accidents. We propose analyzing the behavior of autonomous agents through a quantitative measure of the evidence of intentional behavior. We model an uncertain environment as a Markov Decision Process (MDP). For a given scenario, we rely on probabilistic model checking to compute the ability of the agent to influence reaching a certain event. We call this the scope of agency. We say that there is evidence of intentional behavior if the scope of agency is high and the decisions of the agent are close to being optimal for reaching the event. Our method applies counterfactual reasoning to automatically generate relevant scenarios that can be analyzed to increase the confidence of our assessment. In a case study, we show how our method can distinguish between 'intentional' and 'accidental' traffic collisions.
more »
« less
- PAR ID:
- 10476026
- Publisher / Repository:
- International Joint Conferences on Artificial Intelligence Organization
- Date Published:
- ISBN:
- 978-1-956792-03-4
- Page Range / eLocation ID:
- 372 to 381
- Format(s):
- Medium: X
- Location:
- Macau, SAR China
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Connected autonomous intelligent agents (AIA) can improve intersection performance and resilience for the transportation infrastructure. An agent is an autonomous decision maker whose decision making is determined internally but may be altered by interactions with the environment or with other agents. Implementing agent-based modeling techniques to advance communication for more appropriate decision making can benefit autonomous vehicle technology. This research examines vehicle to vehicle (V2V), vehicle to infrastructure (V2I), and infrastructure to infrastructure (I2I) communication strategies that use gathered data to ensure these agents make appropriate decisions under operational circumstances. These vehicles and signals are modeled to adapt to the common traffic flow of the intersection to ultimately find an traffic flow that will minimizes average vehicle transit time to improve intersection efficiency. By considering each light and vehicle as an agent and providing for communication between agents, additional decision-making data can be transmitted. Improving agent based I2I communication and decision making will provide performance benefits to traffic flow capacities.more » « less
-
Multiscale systems biology is having an increasingly powerful impact on our understanding of the interconnected molecular, cellular, and microenvironmental drivers of tumor growth and the effects of novel drugs and drug combinations for cancer therapy. Agent-based models (ABMs) that treat cells as autonomous decision-makers, each with their own intrinsic characteristics, are a natural platform for capturing intratumoral heterogeneity. Agent-based models are also useful for integrating the multiple time and spatial scales associated with vascular tumor growth and response to treatment. Despite all their benefits, the computational costs of solving agent-based models escalate and become prohibitive when simulating millions of cells, making parameter exploration and model parameterization from experimental data very challenging. Moreover, such data are typically limited, coarse-grained and may lack any spatial resolution, compounding these challenges. We address these issues by developing a first-of-its-kind method that leverages explicitly formulated surrogate models (SMs) to bridge the current computational divide between agent-based models and experimental data. In our approach, Surrogate Modeling for Reconstructing Parameter Surfaces (SMoRe ParS), we quantify the uncertainty in the relationship between agent-based model inputs and surrogate model parameters, and between surrogate model parameters and experimental data. In this way, surrogate model parameters serve as intermediaries between agent-based model input and data, making it possible to use them for calibration and uncertainty quantification of agent-based model parameters that map directly onto an experimental data set. We illustrate the functionality and novelty of Surrogate Modeling for Reconstructing Parameter Surfaces by applying it to an agent-based model of 3D vascular tumor growth, and experimental data in the form of tumor volume time-courses. Our method is broadly applicable to situations where preserving underlying mechanistic information is of interest, and where computational complexity and sparse, noisy calibration data hinder model parameterization.more » « less
-
Multi-agent autonomous racing is a challenging problem for autonomous vehicles due to the split-second, and complex decisions that vehicles must continuously make during a race. The presence of other agents on the track requires continuous monitoring of the ego vehicle’s surroundings, and necessitates predicting the behavior of other vehicles so the ego can quickly react to a changing environment with informed decisions. In our previous work we have developed the DeepRacing AI framework for autonomous formula one racing. Our DeepRacing framework was the first implementation to use the highly photorealisitc Formula One game as a simulation testbed for autonomous racing. We have successfully demonstrated single agent high speed autonomous racing using Bezier curve trajectories. In this paper, we extend the capabilities of the DeepRacing framework towards multi-agent autonomous racing. To do so, we first develop and learn a virtual camera model from game data that the user can configure to emulate the presence of a camera sensor on the vehicle. Next we propose and train a deep recurrent neural network that can predict the future poses of opponent agents in the field of view of the virtual camera using vehicles position, velocity, and heading data with respect to the ego vehicle racecar. We demonstrate early promising results for both these contributions in the game. These added features will extend the DeepRacing framework to become more suitable for multi-agent autonomous racing algorithm developmentmore » « less
-
We investigate how sequential decision making analysis can be used for modeling system resilience. In the aftermath of an extreme event, agents involved in the emergency management aim at an optimal recovery process, trading off the loss due to lack of system functionality with the investment needed for a fast recovery. This process can be formulated as a sequential decision-making optimization problem, where the overall loss has to be minimized by adopting an appropriate policy, and dynamic programming applied to Markov Decision Processes (MDPs) provides a rational and computationally feasible framework for a quantitative analysis. The paper investigates how trends of post-event loss and recovery can be understood in light of the sequential decision making framework. Specifically, it is well known that system’s functionality is often taken to a level different from that before the event: this can be the result of budget constraints and/or economic opportunity, and the framework has the potential of integrating these considerations. But we focus on the specific case of an agent learning something new about the process, and reacting by updating the target functionality level of the system. We illustrate how this can happen in a simplified setting, by using Hidden-Model MPDs (HM-MDPs) for modelling the management of a set of components under model uncertainty. When an extreme event occurs, the agent updates the hazard model and, consequently, her response and long-term planning.more » « less
An official website of the United States government

