skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2319144

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract High-frequency wave propagation in near-inertial wave shear has, for four decades, been considered fundamental in setting the spectral character of the oceanic internal wave continuum and for transporting energy to wave breaking. We compare idealized ray-tracing numerical results with metrics derived using a wave turbulence derivation for the kinetic equation and a path integral to study this specific process. Statistical metrics include the time-dependent ensemble mean vertical wavenumber, referred to as a mean drift; dispersion about the mean drift; time-lagged correlation estimates of wavenumber; and phase locking of the wave packets with the background. The path integral permits us to identify the mean drift as a resonant process and dispersion about that mean drift as nonresonant. At small inertial wave amplitudes, ray tracing, wave turbulence, and the path integral provide consistent descriptions for the mean drift of wave packets in the spectral domain and dispersion about the mean drift. Extrapolating these results to the background internal wavefield overpredicts downscale energy transports by an order of magnitude. At oceanic amplitudes, however, the numerics support diminished transport and dispersion that coincide with the mean drift time scale becoming similar to the lagged correlation time scale. We parse this as the transition to a non-Markovian process. Despite this decrease, numerical estimates of downscale energy transfer are still too large. We argue that residual differences result from an unwarranted discard of Bragg scattering resonances. Our results support replacing the long-standing interpretive paradigm of extreme scale-separated interactions with a more nuanced slate of “local” interactions in the kinetic equation. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Abstract Motivated by the importance of mixing arising from dissipating internal waves (IWs), vertical profiles of internal‐wave dissipation from a high‐resolution regional ocean model are compared with finestructure estimates made from observations. A horizontal viscosity scheme restricted to only act on horizontally rotational modes (such as eddies) is introduced and tested. At lower resolutions with horizontal grid spacings of 2 km, the modeled IW dissipation from numerical model agrees reasonably well with observations in some cases when the restricted form of horizontal viscosity is used. This suggests the possibility that if restricted forms of horizontal viscosity are adopted by global models with similar resolutions, they could be used to diagnose and map IW dissipation distributions. At higher resolutions with horizontal grid spacings of ∼250 m, the dissipation from vertical shear and horizontal viscosity act much more strongly resulting in dissipation overestimates; however, the vertical‐shear dissipation itself is found to agree well with observations. 
    more » « less
  3. Abstract The internal wave (IW) continuum of a regional ocean model is studied in terms of the vertical spectral kinetic energy (KE) fluxes and transfers at high vertical wavenumbers. Previous work has shown that this model permits a partial representation of the IW cascade. In this work, vertical spectral KE flux is decomposed into catalyst, source, and destination vertical modes and frequency bands of nonlinear scattering, a framework that allows for the discernment of different types of nonlinear interactions involving both waves and eddies. Energy transfer within the supertidal IW continuum is found to be strongly dependent on resolution. Specifically, at a horizontal grid spacing of 1/48°, most KE in the supertidal continuum arrives there from lower-frequency modes through a single nonlinear interaction, whereas at 1/384° and with sufficient vertical resolution KE transfers within the supertidal IW continuum are comparable in size to KE transfer from lower-frequency modes. Additionally, comparisons are made with existing theoretical and observational work on energy pathways in the IW continuum. Induced diffusion (ID) is found to be associated with a weak forward frequency transfer within the supertidal IW continuum. ID is also limited to the highest vertical wavenumbers and is more sensitive to resolution relative to spectrally local interactions. At the same time, ID-like processes involving high-vertical-wavenumber near-inertial and tidal waves as well as low-vertical-wavenumber eddy fields are substantial, suggesting that the processes giving rise to a Garrett–Munk-like spectra in the present numerical simulation and perhaps the real ocean may be more varied than in idealized or wave-only frameworks. 
    more » « less
  4. Free, publicly-accessible full text available December 1, 2025
  5. Wave turbulence provides a conceptual framework for weakly nonlinear interactions in dispersive media. Dating from five decades ago, applications of wave turbulence theory to oceanic internal waves assigned a leading-order role to interactions characterized by a near equivalence between the group velocity of high-frequency internal waves with the phase velocity of near-inertial waves. This scale-separated interaction leads to a Fokker–Planck (generalized diffusion) equation. More recently, starting four decades ago, this scale-separated paradigm has been investigated using ray tracing methods. These ray methods characterize spectral transport of energy by counting the amplitude and net velocity of wave packets in phase space past a high-wavenumber gate prior to ‘breaking’. This explicitly advective characterization is based on an intuitive assignment and lacks theoretical underpinning. When one takes an estimate of the net spectral drift from the wave turbulence derivation and makes the corresponding assessment, one obtains a prediction of spectral transport that is an order of magnitude larger than either observations or reported ray tracing estimates. Motivated by this contradiction, we report two parallel derivations for transport equations describing the refraction of high-frequency internal waves in a sea of random inertial waves. The first uses standard wave turbulence techniques and the second is an ensemble-averaged packet transport equation characterized by the dispersion of wave packets about a mean drift in the spectral domain. The ensemble-averaged transport equation for ray tracing differs in that it contains the intuitively motivated advective term. We conclude that the aforementioned contradiction between theory, numerics and observations needs to be taken at face value and present a pathway for resolving this contradiction. 
    more » « less