Abstract The internal wave (IW) continuum of a regional ocean model is studied in terms of the vertical spectral kinetic energy (KE) fluxes and transfers at high vertical wavenumbers. Previous work has shown that this model permits a partial representation of the IW cascade. In this work, vertical spectral KE flux is decomposed into catalyst, source, and destination vertical modes and frequency bands of nonlinear scattering, a framework that allows for the discernment of different types of nonlinear interactions involving both waves and eddies. Energy transfer within the supertidal IW continuum is found to be strongly dependent on resolution. Specifically, at a horizontal grid spacing of 1/48°, most KE in the supertidal continuum arrives there from lower-frequency modes through a single nonlinear interaction, whereas at 1/384° and with sufficient vertical resolution KE transfers within the supertidal IW continuum are comparable in size to KE transfer from lower-frequency modes. Additionally, comparisons are made with existing theoretical and observational work on energy pathways in the IW continuum. Induced diffusion (ID) is found to be associated with a weak forward frequency transfer within the supertidal IW continuum. ID is also limited to the highest vertical wavenumbers and is more sensitive to resolution relative to spectrally local interactions. At the same time, ID-like processes involving high-vertical-wavenumber near-inertial and tidal waves as well as low-vertical-wavenumber eddy fields are substantial, suggesting that the processes giving rise to a Garrett–Munk-like spectra in the present numerical simulation and perhaps the real ocean may be more varied than in idealized or wave-only frameworks.
more »
« less
This content will become publicly available on September 16, 2025
Internal‐Wave Dissipation Mechanisms and Vertical Structure in a High‐Resolution Regional Ocean Model
Abstract Motivated by the importance of mixing arising from dissipating internal waves (IWs), vertical profiles of internal‐wave dissipation from a high‐resolution regional ocean model are compared with finestructure estimates made from observations. A horizontal viscosity scheme restricted to only act on horizontally rotational modes (such as eddies) is introduced and tested. At lower resolutions with horizontal grid spacings of 2 km, the modeled IW dissipation from numerical model agrees reasonably well with observations in some cases when the restricted form of horizontal viscosity is used. This suggests the possibility that if restricted forms of horizontal viscosity are adopted by global models with similar resolutions, they could be used to diagnose and map IW dissipation distributions. At higher resolutions with horizontal grid spacings of ∼250 m, the dissipation from vertical shear and horizontal viscosity act much more strongly resulting in dissipation overestimates; however, the vertical‐shear dissipation itself is found to agree well with observations.
more »
« less
- PAR ID:
- 10541318
- Publisher / Repository:
- American Geophysical Union/Wiley
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 51
- Issue:
- 17
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Previous research has shown that 3-km horizontal grid spacing simulations depicting clusters of cells often change to showing linear structures when grid spacing is refined to 1 km. This increase in linear structures at finer horizontal grid spacings may be due simply to the resolving of stronger vertical motion along the leading edge of the MCS cold pool resulting in more continuous zones of convection in higher-resolution runs. However, prior work has suggested that the cold pools themselves are stronger with finer grid spacing, enhancing lift to grow linear morphologies faster. In the present study, Cloud Model 1 was used to simulate an array of MCSs with varying wind profiles and a constant thermodynamic profile (Weisman–Klemp analytic sounding) at both 1- and 3-km horizontal grid spacings and with 50 and 100 vertical levels. A line of seven randomly spaced warm bubbles was used to initiate convection. In 1-km Δxsimulations, gravity waves dominated in initiating new convection for growth into lines, and the ascent associated with them was much greater than in 3-km runs. Upscale growth into lines in 3-km Δxsimulations was driven more by ascent caused by the collision of convective cold pools.more » « less
-
Abstract The Arctic climate is changing rapidly, with dramatic sea ice declines and increasing upper‐ocean heat content. While oceanic heat has historically been isolated from the sea ice by weak vertical mixing, it has been hypothesized that a reduced ice pack will increase energy transfer from the wind into the internal wave (IW) field, enhancing mixing and accelerating ice melt. We evaluate this positive ice/internal‐wave feedback using a finescale parameterization to estimate dissipation, a proxy for the energy available for IW‐driven mixing, from pan‐Arctic hydrographic profiles over 18 years. We find that dissipation has nearly doubled in summer in some regions. Associated heat fluxes have risen by an order of magnitude, underpinned by increases in the strength and prevalence of IW‐driven mixing. While the impact of the ice/internal‐wave feedback will likely remain negligible in the western Arctic, sea‐ice melt in the eastern Arctic appears vulnerable to the feedback strengthening.more » « less
-
Abstract The degree of improvement in convective representation in NWP with horizontal grid spacings finer than 3 km remains debatable. While some research suggests subkilometer horizontal grid spacing is needed to resolve details of convective structures, other studies have shown that decreasing grid spacing from 3–4 to 1–2 km offers little additional value for forecasts of deep convection. In addition, few studies exist to show how changes in vertical grid spacing impact thunderstorm forecasts, especially when horizontal grid spacing is simultaneously decreased. The present research investigates how warm-season central U.S. simulated MCS cold pools for 11 observed cases are impacted by decreasing horizontal grid spacing from 3 to 1 km, while increasing the vertical levels from 50 to 100 in WRF runs. The 3-km runs with 100 levels produced the deepest and most negatively buoyant cold pools compared to all other grid spacings since updrafts were more poorly resolved, resulting in a higher flux of rearward-advected frozen hydrometeors, whose melting processes were augmented by the finer vertical grid spacing, which better resolved the melting layer. However, the more predominant signal among all 11 cases was for more expansive cold pools in 1-km runs, where the stronger and more abundant updrafts focused along the MCS leading line supported a larger volume of concentrated rearward hydrometeor advection and resultant latent cooling at lower levels.more » « less
-
Abstract Vertical mixing is often regarded as the Achilles' heel of ocean models. In particular, few models include a comprehensive and energy‐constrained parameterization of mixing by internal ocean tides. Here, we present an energy‐conserving mixing scheme which accounts for the local breaking of high‐mode internal tides and the distant dissipation of low‐mode internal tides. The scheme relies on four static two‐dimensional maps of internal tide dissipation, constructed using mode‐by‐mode Lagrangian tracking of energy beams from sources to sinks. Each map is associated with a distinct dissipative process and a corresponding vertical structure. Applied to an observational climatology of stratification, the scheme produces a global three‐dimensional map of dissipation which compares well with available microstructure observations and with upper‐ocean finestructure mixing estimates. This relative agreement, both in magnitude and spatial structure across ocean basins, suggests that internal tides underpin most of observed dissipation in the ocean interior at the global scale. The proposed parameterization is therefore expected to improve understanding, mapping, and modeling of ocean mixing.more » « less