skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Internal‐Wave Dissipation Mechanisms and Vertical Structure in a High‐Resolution Regional Ocean Model
Abstract Motivated by the importance of mixing arising from dissipating internal waves (IWs), vertical profiles of internal‐wave dissipation from a high‐resolution regional ocean model are compared with finestructure estimates made from observations. A horizontal viscosity scheme restricted to only act on horizontally rotational modes (such as eddies) is introduced and tested. At lower resolutions with horizontal grid spacings of 2 km, the modeled IW dissipation from numerical model agrees reasonably well with observations in some cases when the restricted form of horizontal viscosity is used. This suggests the possibility that if restricted forms of horizontal viscosity are adopted by global models with similar resolutions, they could be used to diagnose and map IW dissipation distributions. At higher resolutions with horizontal grid spacings of ∼250 m, the dissipation from vertical shear and horizontal viscosity act much more strongly resulting in dissipation overestimates; however, the vertical‐shear dissipation itself is found to agree well with observations.  more » « less
Award ID(s):
2319142 2319144 1851164
PAR ID:
10541318
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
American Geophysical Union/Wiley
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
51
Issue:
17
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The internal wave (IW) continuum of a regional ocean model is studied in terms of the vertical spectral kinetic energy (KE) fluxes and transfers at high vertical wavenumbers. Previous work has shown that this model permits a partial representation of the IW cascade. In this work, vertical spectral KE flux is decomposed into catalyst, source, and destination vertical modes and frequency bands of nonlinear scattering, a framework that allows for the discernment of different types of nonlinear interactions involving both waves and eddies. Energy transfer within the supertidal IW continuum is found to be strongly dependent on resolution. Specifically, at a horizontal grid spacing of 1/48°, most KE in the supertidal continuum arrives there from lower-frequency modes through a single nonlinear interaction, whereas at 1/384° and with sufficient vertical resolution KE transfers within the supertidal IW continuum are comparable in size to KE transfer from lower-frequency modes. Additionally, comparisons are made with existing theoretical and observational work on energy pathways in the IW continuum. Induced diffusion (ID) is found to be associated with a weak forward frequency transfer within the supertidal IW continuum. ID is also limited to the highest vertical wavenumbers and is more sensitive to resolution relative to spectrally local interactions. At the same time, ID-like processes involving high-vertical-wavenumber near-inertial and tidal waves as well as low-vertical-wavenumber eddy fields are substantial, suggesting that the processes giving rise to a Garrett–Munk-like spectra in the present numerical simulation and perhaps the real ocean may be more varied than in idealized or wave-only frameworks. 
    more » « less
  2. Abstract Previous research has shown that 3-km horizontal grid spacing simulations depicting clusters of cells often change to showing linear structures when grid spacing is refined to 1 km. This increase in linear structures at finer horizontal grid spacings may be due simply to the resolving of stronger vertical motion along the leading edge of the MCS cold pool resulting in more continuous zones of convection in higher-resolution runs. However, prior work has suggested that the cold pools themselves are stronger with finer grid spacing, enhancing lift to grow linear morphologies faster. In the present study, Cloud Model 1 was used to simulate an array of MCSs with varying wind profiles and a constant thermodynamic profile (Weisman–Klemp analytic sounding) at both 1- and 3-km horizontal grid spacings and with 50 and 100 vertical levels. A line of seven randomly spaced warm bubbles was used to initiate convection. In 1-km Δxsimulations, gravity waves dominated in initiating new convection for growth into lines, and the ascent associated with them was much greater than in 3-km runs. Upscale growth into lines in 3-km Δxsimulations was driven more by ascent caused by the collision of convective cold pools. 
    more » « less
  3. Abstract The Arctic climate is changing rapidly, with dramatic sea ice declines and increasing upper‐ocean heat content. While oceanic heat has historically been isolated from the sea ice by weak vertical mixing, it has been hypothesized that a reduced ice pack will increase energy transfer from the wind into the internal wave (IW) field, enhancing mixing and accelerating ice melt. We evaluate this positive ice/internal‐wave feedback using a finescale parameterization to estimate dissipation, a proxy for the energy available for IW‐driven mixing, from pan‐Arctic hydrographic profiles over 18 years. We find that dissipation has nearly doubled in summer in some regions. Associated heat fluxes have risen by an order of magnitude, underpinned by increases in the strength and prevalence of IW‐driven mixing. While the impact of the ice/internal‐wave feedback will likely remain negligible in the western Arctic, sea‐ice melt in the eastern Arctic appears vulnerable to the feedback strengthening. 
    more » « less
  4. Abstract This work tests a methodology for estimating the ocean stratification gradient using remotely sensed, high temporal and spatial resolution field measurements of internal wave propagation speeds. The internal wave (IW) speeds were calculated from IW tracks observed using a shore-based, X-band marine radar deployed at a field site on the south-central coast of California. An inverse model, based on the work of Kar and Guha, utilizes the linear internal wave dispersion relation, assuming a constant vertical density gradient is the basis for the inverse model. This allows the vertical gradient of density to be expressed as a function of the internal wave phase speed, local water depth, and a background average density. The inputs to the algorithm are the known cross-shore bathymetry, the background ocean density, and the remotely sensed cross-shore profiles of IW speed. The estimated density gradients are then compared to the synchronously measured vertical density profiles collected from an in situ instrument array. The results show a very good agreement offshore in deeper water (∼50–30 m) but more significant discrepancies in shallow water (20–10 m) closer to shore. In addition, a sensitivity analysis is conducted that relates errors in measured speeds to errors in the estimated density gradients. Significance StatementThe propagation speed of ocean internal waves inherently depends on the vertical structure of the water density, which is termed stratification. In this work, we evaluate and test with real field observations a technique to infer the ocean density stratification from internal wave propagation speeds collected from remote sensing images. Such methods offer a way to monitor ocean stratification without the need for extensive in situ measurements. 
    more » « less
  5. Abstract. This paper describes and analyzes the Reed–Jablonowski (RJ) tropical cyclone (TC) test case used in the 2016 Dynamical Core Model Intercomparison Project (DCMIP2016). This intermediate-complexity test case analyzes the evolution of a weak vortex into a TC in an idealized tropical environment. Reference solutions from nine general circulation models (GCMs) with identical simplified physics parameterization packages that participated in DCMIP2016 are analyzed in this study at 50 km horizontal grid spacing, with five of these models also providing solutions at 25 km grid spacing. Evolution of minimum surface pressure (MSP) and maximum 1 km azimuthally averaged wind speed (MWS), the wind–pressure relationship, radial profiles of wind speed and surface pressure, and wind composites are presented for all participating GCMs at both horizontal grid spacings. While all TCs undergo a similar evolution process, some reach significantly higher intensities than others, ultimately impacting their horizontal and vertical structures. TCs simulated at 25 km grid spacings retain these differences but reach higher intensities and are more compact than their 50 km counterparts. These results indicate that dynamical core choice is an essential factor in GCM development, and future work should be conducted to explore how specific differences within the dynamical core affect TC behavior in GCMs. 
    more » « less