Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Plants and mycorrhizal fungi form mutualistic relationships that affect how resources flow between organisms and within ecosystems. Common mycorrhizal networks (CMNs) could facilitate preferential transfer of carbon and limiting nutrients, but this remains difficult to predict. Do CMNs favour fungal resource acquisition at the expense of plant resource demands (a fungi‐centric view), or are they passive channels through which plants regulate resource fluxes (a plant‐centric view)?We used stable isotope tracers (13CO2and15NH3), plant traits, and mycorrhizal DNA to quantify above‐ and below‐ground carbon and nitrogen transfer between 18 plant species along a 520‐km latitudinal gradient in the Pacific Northwest, USA.Plant functional type and tissue stoichiometry were the most important predictors of interspecific resource transfer. Of ‘donor’ plants, 98% were13C‐enriched, but we detected transfer in only 2% of ‘receiver’ plants. However, all donors were15N‐enriched and we detected transfer in 81% of receivers. Nitrogen was preferentially transferred to annuals (0.26 ± 0.50 mg N per g leaf mass) compared with perennials (0.13 ± 0.30 mg N per g leaf mass). This corresponded with tissue stoichiometry differences.SynthesisOur findings suggest that plants and fungi that are located closer together in space and with stronger demand for resources over time are more likely to receive larger amounts of those limiting resources. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
- 
            Abstract Despite much interest in relationships among carbon and water in forests, few studies assess how carbon accumulation scales with water use in forested watersheds with varied histories. This study quantified tree growth, water use efficiency, and carbon‐water tradeoffs of young versus mature/old‐growth forest in three small (13–22 ha) watersheds in the H.J. Andrews Experimental Forest, Oregon, USA. To quantify and scale carbon‐water tradeoffs from trees to watersheds, tree‐ring records and greenness and wetness indices from remote sensing were combined with long‐term vegetation, climate, and streamflow data from young forest watersheds (trees ∼45 years of age) and from a mature/old‐growth forest watershed (trees 150–500 years of age). Biomass production was closely related to water use; water use efficiency (basal area increment per unit of evapotranspiration) was lower; and carbon‐water tradeoffs were steeper in young forest plantations compared with old‐growth forest for which the tree growth record begins in the 1850s. Greenness and wetness indices from Landsat imagery were not significant predictors of streamflow or tree growth over the period 1984 to 2017, and soil C and N did not differ significantly among watersheds. Multiple lines of evidence show that mature and old‐growth forest watersheds store and accumulate more carbon, are more drought resistant, and better sustain water availability compared to young forests. These results provide a basis for reconstructions and predictions that are potentially broadly applicable, because first‐order watersheds occupy 80%–90% of large river basins and study watersheds are representative of forest history in the Pacific Northwest region.more » « less
- 
            Abstract Prescribed fire has been increasingly promoted to reduce wildfire risk and restore fire‐adapted ecosystems. Yet, the complexities of forest ecosystem dynamics in response to disturbances, climate change, and drought stress, combined with myriad social and policy barriers, have inhibited widespread implementation. Using the forest succession model LANDIS‐II, we investigated the likely impacts of increasing prescribed fire frequency and extent on wildfire severity and forest carbon storage at local and landscape scales. Specifically, we ask how much prescribed fire is required to maintain carbon storage and reduce the severity and extent of wildfires under divergent climate change scenarios? We simulated four prescribed fire scenarios (no prescribed fire, business‐as‐usual, moderate increase, and large increase) in the Siskiyou Mountains of northwest California and southwest Oregon. At the local site scale, prescribed fires lowered the severity of projected wildfires and maintained approximately the same level of ecosystem carbon storage when reapplied at a ~15‐year return interval for 50‐year simulations. Increased frequency and extent of prescribed fire decreased the likelihood of aboveground carbon combustion during wildfire events. However, at the landscape scale, prescribed fire did not decrease the projected severity and extent of wildfire, even when large increases (up to 10× the current levels) of prescribed fire were simulated. Prescribed fire was most effective at reducing wildfire severity under a climate change scenario with increased temperature and precipitation and on sites with north‐facing aspects and slopes greater than 30°. Our findings suggest that placement matters more than frequency and extent to estimate the effects of prescribed fire, and that prescribed fire alone would not be sufficient to reduce the risk of wildfire and promote carbon sequestration at regional scales in the Siskiyou Mountains. To improve feasibility, we propose targeting areas of high concern or value to decrease the risk of high‐severity fire and contribute to meeting climate mitigation and adaptation goals. Our results support strategic and targeted landscape prioritization of fire treatments to reduce wildfire severity and increase the pace and scale of forest restoration in areas of social and ecological importance, highlighting the challenges of using prescribed fire to lower wildfire risk.more » « less
- 
            Natural climate solutions have been proposed as a way to mitigate climate change by removing CO2and other greenhouse gases from the atmosphere and increasing carbon storage in ecosystems. The adoption of such practices is required at large spatial and temporal scales, which means that local implementation across different land use and conservation sectors must be coordinated at landscape and regional levels. Here, we describe the spatiotemporal domains of research in the field of climate solutions and, as a first approximation, we use the Pacific Northwest (PNW) of the United States as a model system to evaluate the potential for coordinated implementations. By combining estimates of soil organic carbon stocks and CO2fluxes with projected changes in climate, we show how land use may be prioritized to improve carbon drawdown and permanence across multiple sectors at local to regional scales. Our consideration of geographical context acknowledges some of the ecological and social challenges of climate change mitigation efforts for the implementation of scalable solutions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
