skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2320296

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract ContextUnoccupied aerial systems/vehicles (UAS/UAV, a.k.a. drones) have become an increasingly popular tool for ecological research. But much of the recent research is concerned with developing mapping and detection approaches, with few studies attempting to link UAS data to ecosystem processes and function. Landscape ecologists have long used high resolution imagery and spatial analyses to address ecological questions and are therefore uniquely positioned to advance UAS research for ecological applications. ObjectivesThe review objectives are to: (1) provide background on how UAS are used in landscape ecological studies, (2) identify major advancements and research gaps, and (3) discuss ways to better facilitate the use of UAS in landscape ecology research. MethodsWe conducted a systematic review based on PRISMA guidelines using key search terms that are unique to landscape ecology research. We reviewed only papers that applied UAS data to investigate questions about ecological patterns, processes, or function. ResultsWe summarize metadata from 161 papers that fit our review criteria. We highlight and discuss major research themes and applications, sensors and data collection techniques, image processing, feature extraction and spatial analysis, image fusion and satellite scaling, and open data and software. ConclusionWe observed a diversity of UAS methods, applications, and creative spatial modeling and analysis approaches. Key aspects of UAS research in landscape ecology include modeling wildlife micro-habitats, scaling of ecosystem functions, landscape and geomorphic change detection, integrating UAS with historical aerial and satellite imagery, and novel applications of spatial statistics. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Abstract ContextSoil resource heterogeneity drives plant species diversity patterns at local and landscape scales. In drylands, biocrusts are patchily distributed and contribute to soil resource heterogeneity important for plant establishment and growth. Yet, we have a limited understanding of how such heterogeneity may relate to patterns of plant diversity and community structure. ObjectivesWe explored relationships between biocrust-associated soil cover heterogeneity and plant diversity patterns in a cool desert ecosystem. We asked: (1) does biocrust-associated soil cover heterogeneity predict plant diversity and community composition? and (2) can we use high-resolution remote sensing data to calculate soil cover heterogeneity metrics that could be used to extrapolate these patterns across landscapes? MethodsWe tested associations among field-based measures of plant diversity and soil cover heterogeneity. We then used a Support Vector Machine classification to map soil, plant and biocrust cover from sub-centimeter resolution Unoccupied Aerial System (UAS) imagery and compared the mapped results to field-based measures. ResultsField-based soil cover heterogeneity and biocrust cover were positively associated with plant diversity and predicted community composition. The accuracy of UAS-mapped soil cover classes varied across sites due to variation in timing and quality of image collections, but the overall results suggest that UAS are a promising data source for generating detailed, spatially explicit soil cover heterogeneity metrics. ConclusionsResults improve understanding of relationships between biocrust-associated soil cover heterogeneity and plant diversity and highlight the promise of high-resolution UAS data to extrapolate these patterns over larger landscapes which could improve conservation planning and predictions of dryland responses to soil degradation under global change. 
    more » « less
  3. ABSTRACT Water redistribution during rain events in drylands plays a critical role in the persistence and spatial pattern of vascular plants in these patchy ecosystems. Biological soil crusts (BSCs) form a membrane in the soil surface and mediate ecohydrological dynamics. However, little is known about their influence on dryland ecosystem state and spatial pattern under changing climate, which may alter total annual rainfall and intraannual rainfall regime. Building on existing models, we develop a model that considers BSC–vascular plant interactions and realistic ecohydrological dynamics under rainfall pulses. We find that the presence of BSCs often increases ecosystem resilience by promoting runoff to plants under high aridity. However, the benefit of BSCs comes at the cost of plant biomass under relatively wetter conditions; a threshold in BSC effect occurs when water losses from BSCs exceed the benefit by their surface water routing to plants. Increased resilience from BSCs, and their own persistence, can be promoted in finer soils and under rainfall regimes of less frequent events—projected for many drylands. Lastly, we find that BSCs alter feedbacks underlying plant spatial self‐organization and hence their formed patterns. In high aridity, BSCs likely ameliorate competition between plants through large scale runoff promotion, reducing plant spatial pattern regularity. Our analysis highlights that BSCs significantly shape drylands' response to climate change and their positive effects on resilience may be stronger and more pervasive in a drier future, but such benefits come at a cost of ecosystem biomass and productivity when aridity is outside a critical range. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  4. Abstract Wildfires have increased in size, frequency, and intensity in arid regions of the western United States because of human activity, changing land use, and rising temperature. Fire can degrade water quality, reshape aquatic habitat, and increase the risk of high discharge and erosion. Drawing from patterns in montane dry forest, chaparral, and desert ecosystems, we developed a conceptual framework describing how interactions and feedbacks among material accumulation, combustion of fuels, and hydrologic transport influence the effects of fire on streams. Accumulation and flammability of fuels shift in opposition along gradients of aridity, influencing the materials available for transport. Hydrologic transport of combustion products and materials accumulated after fire can propagate the effects of fire to unburned stream–riparian corridors, and episodic precipitation characteristic of arid lands can cause lags, spatial heterogeneity, and feedbacks in response. Resolving uncertainty in fire effects on arid catchments will require monitoring across hydroclimatic gradients and episodic precipitation. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  5. Abstract Increased occurrence, size, and intensity of fire result in significant but variable changes to hydrology and material retention in watersheds with concomitant effects on stream biogeochemistry. In arid regions, seasonal and episodic precipitation results in intermittency in flows connecting watersheds to recipient streams that can delay the effects of fire on stream chemistry. We investigated how the spatial extent of fire within watersheds interacts with variability in amount and timing of precipitation to influence stream chemistry of three forested, montane watersheds in a monsoonal climate and four coastal, chaparral watersheds in a Mediterranean climate. We applied state-space models to estimate effects of precipitation, fire, and their interaction on stream chemistry up to five years following fire using 15 + years of monthly observations. Precipitation alone diluted specific conductance and flushed nitrate and phosphate to Mediterranean streams. Fire had positive and negative effects on specific conductance in both climates, whereas ammonium and nitrate concentrations increased following fire in Mediterranean streams. Fire and precipitation had positive interactive effects on specific conductance in monsoonal streams and on ammonium in Mediterranean streams. In most cases, the effects of fire and its interaction with precipitation persisted or were lagged 2–5 years. These results suggest that precipitation influences the timing and intensity of the effects of fire on stream solute dynamics in aridland watersheds, but these responses vary by climate, solute, and watershed characteristics. Time series models were applied to data from long-term monitoring that included observations before and after fire, yielding estimated effects of fire on aridland stream chemistry. This statistical approach captured effects of local-scale temporal variation, including delayed responses to fire, and may be used to reduce uncertainty in predicted responses of water quality under changing fire and precipitation regimes of arid lands. 
    more » « less
  6. Free, publicly-accessible full text available February 1, 2026
  7. We develop a conceptual framework for geo-evolutionary feedbacks which de- scribes the mutual interplay between landscape change and the evolution of traits of organisms residing on the landscape, with an emphasis on contempo- rary timeframes. Geo-evolutionary feedbacks can be realized via the direct evo- lution of geomorphic engineering traits or can be mediated by the evolution of trait variation that affects the population size and distribution of the specific geo- morphic engineering organisms involved. Organisms that modify their local envi- ronments provide the basis for patch-scale geo-evolutionary feedbacks, whereas spatial self-organization provides a mechanism for geo-evolutionary feedbacks at the landscape scale. Understanding these likely prevalent geo- evolutionary feedbacks, that occur at timescales similar to anthropogenic cli- mate change, will be essential to better predict landscape adaptive capacity and change. 
    more » « less
  8. This study investigates mechanisms that generate regularly spaced iron-rich bands in upland soils. These striking features appear in soils worldwide, but beyond a generalized association with changing redox, their genesis is yet to be explained. Upland soils exhibit significant redox fluctuations driven by rainfall, groundwater changes, or irrigation. Pattern formation in such systems provides an opportunity to investigate the temporal aspects of spatial self-organization, which have been heretofore understudied. By comparing multiple alternative mechanisms, we found that regular iron banding in upland soils is explained by coupling two sets of scale-dependent feedbacks, the general principle of Turing morphogenesis. First, clay dispersion and coagulation in iron redox fluctuations amplify soil Fe(III) aggregation and crystal growth to a level that negatively affects root growth. Second, the activation of this negative root response to highly crystalline Fe(III) leads to the formation of rhythmic iron bands. In forming iron bands, environmental variability plays a critical role. It creates alternating anoxic and oxic conditions for required pattern-forming processes to occur in distinctly separated times and determines durations of anoxic and oxic episodes, thereby controlling relative rates of processes accompanying oxidation and reduction reactions. As Turing morphogenesis requires ratios of certain process rates to be within a specific range, environmental variability thus modifies the likelihood that pattern formation will occur. Projected changes of climatic regime could significantly alter many spatially self-organized systems, as well as the ecological functioning associated with the striking patterns they present. This temporal dimension of pattern formation merits close attention in the future. 
    more » « less