skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2323751

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Neuromorphic photonics has become one of the research forefronts in photonics, with its benefits in low‐latency signal processing and potential in significant energy consumption reduction when compared with digital electronics. With artificial intelligence (AI) computing accelerators in high demand, one of the high‐impact research goals is to build scalable neuromorphic photonic integrated circuits which can accelerate the computing of AI models at high energy efficiency. A complete neuromorphic photonic computing system comprises seven stacks: materials, devices, circuits, microarchitecture, system architecture, algorithms, and applications. Here, we consider microring resonator (MRR)‐based network designs toward building scalable silicon integrated photonic neural networks (PNN), and variations of MRR resonance wavelength from the fabrication process and their impact on PNN scalability. Further, post‐fabrication processing using organic photochromic layers over the silicon platform is shown to be effective for trimming MRR resonance wavelength variation, which can significantly reduce energy consumption from the MRR‐based PNN configuration. Post‐fabrication processing with photochromic materials to compensate for the variation in MRR fabrication will allow a scalable silicon system on a chip without sacrificing today's performance metrics, which will be critical for the commercial viability and volume production of large‐scale silicon photonic circuits. 
    more » « less