skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2323910

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Unlike noble metals, refractory plasmonic materials can maintain resilient and attractive optical properties even at comparatively extreme temperatures and high current densities. One refractory plasmonic material of interest is TiN, which exhibits an extremely high melting temperature of about 3000 K and noble-metal-like optical properties in the visible and near-infrared regime. Using lithographically fabricated TiN nanowires and leveraging their ability to host plasmon modes, we have examined plasmonic photothermal heating and photothermoelectric response whose anisotropy and magnitude depend on the width of the nanowires. The photothermoelectric response is consistent with changes in the Seebeck coefficient where the wire fans out to wider contact pads. Upon electrically biasing the structures, Joule heating of the TiN wires can produce detectable thermal emission within the visible and near-IR range, with emission intensity growing rapidly with increasing bias. This emission is consistent with local temperatures exceeding 2000 K, as expected from a finite element model of the Joule heating. 
    more » « less
  2. Two-dimensional (2D) transition metal carbides, nitrides and carbonitrides, known as MXenes, are of interest as electrocatalysts. Tungsten-based MXenes are predicted to have low overpotentials in the hydrogen evolution reaction but their synthesis has proven difficult due to the calculated instability of their hypothetical MAX precursors. In this study, we present a theory-guided synthesis of a tungsten-based MXene, W2TiC2Tx, derived from a non-MAX nanolaminated ternary carbide (W,Ti)4C4−y precursor by the selective etching of one of the covalently bonded tungsten layers. Our results indicate the importance of tungsten and titanium ordering, the presence of vacancy defects in the metal layers, and the lack of oxygen impurities in the carbon layers for the successful selective etching of the precursor. We confirm the atomistic out-of-plane ordering of tungsten and titanium using computational and experimental characterizations. The tungsten-rich basal plane endows W2TiC2Tx MXene with a high electrocatalytic hydrogen evolution reaction performance (∼144 mV overpotential at 10 mA cm−2). This study reports a tungsten-based MXene synthesized from a covalently bonded non-MAX precursor, adding to the synthetic strategies for 2D materials. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  3. Photonic technologies continue to drive the quest for new optical materials with unprecedented responses. A major frontier in this field is the exploration of nonlocal (spatially dispersive) materials, going beyond the local, wavevector-independent assumption traditionally adopted in optical material modeling. The growing interest in plasmonic, polaritonic, and quantum materials has revealed naturally occurring nonlocalities, emphasizing the need for more accurate models to predict and design their optical responses. This has major implications also for topological, nonreciprocal, and time-varying systems based on these material platforms. Beyond natural materials, artificially structured materials—metamaterials and metasurfaces—can provide even stronger and engineered nonlocal effects, emerging from long-range interactions or multipolar effects. This is a rapidly expanding area in the field of photonic metamaterials, with open frontiers yet to be explored. In metasurfaces, in particular, nonlocality engineering has emerged as a powerful tool for designing strongly wavevector-dependent responses, enabling enhanced wavefront control, spatial compression, multifunctional devices, and wave-based computing. Furthermore, nonlocality and related concepts play a critical role in defining the ultimate limits of what is possible in optics, photonics, and wave physics. This Roadmap aims to survey the most exciting developments in nonlocal photonic materials and metamaterials, highlight new opportunities and open challenges, and chart new pathways that will drive this emerging field forward—toward new scientific discoveries and technological advancements. 
    more » « less