skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2324744

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Cities need climate information to develop resilient infrastructure and for adaptation decisions. The information desired is at the order of magnitudes finer scales relative to what is typically available from climate analysis and future projections. Urban downscaling refers to developing such climate information at the city (order of 1 – 10 km) and neighborhood (order of 0.1 – 1 km) resolutions from coarser climate products. Developing these higher resolution (finer grid spacing) data needed for assessments typically covering multiyear climatology of past data and future projections is complex and computationally expensive for traditional physics-based dynamical models. In this study, we develop and adopt a novel approach for urban downscaling by generating a general-purpose operator using deep learning. This ‘DownScaleBench’ tool can aid the process of downscaling to any location. The DownScaleBench has been generalized for both in situ (ground- based) and satellite or reanalysis gridded data. The algorithm employs an iterative super-resolution convolutional neural network (Iterative SRCNN) over the city. We apply this for the development of a high-resolution gridded precipitation product (300 m) from a relatively coarse (10 km) satellite-based product (JAXA GsMAP). The high-resolution gridded precipitation datasets is compared against insitu observations for past heavy rain events over Austin, Texas, and shows marked improvement relative to the coarser datasets relative to cubic interpolation as a baseline. The creation of this Downscaling Bench has implications for generating high-resolution gridded urban meteorological datasets and aiding the planning process for climate-ready cities.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Abstract

    Taking the examples of Hurricane Florence (2018) over the Carolinas and Hurricane Harvey (2017) over the Texas Gulf Coast, the study attempts to understand the performance of slab, single‐layer Urban Canopy Model (UCM), and Building Environment Parameterization (BEP) in simulating hurricane rainfall using the Weather Research and Forecasting (WRF) model. The WRF model simulations showed that for an intense, large‐scale event such as a hurricane, the model quantitative precipitation forecast over the urban domain was sensitive to the model urban physics. The spatial and temporal verification using the modified Kling‐Gupta efficiency and Method for Object based Diagnostic and Evaluation in Time Domain suggests that UCM performance is superior to the BEP scheme. Additionally, using the BEP urban physics scheme over UCM for landfalling hurricane rainfall simulations has helped simulate heavy rainfall hotspots.

     
    more » « less
  3. Free, publicly-accessible full text available November 1, 2024