skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Title: DownScaleBench for developing and applying a deep learning based urban climate downscaling- first results for high-resolution urban precipitation climatology over Austin, Texas
Abstract Cities need climate information to develop resilient infrastructure and for adaptation decisions. The information desired is at the order of magnitudes finer scales relative to what is typically available from climate analysis and future projections. Urban downscaling refers to developing such climate information at the city (order of 1 – 10 km) and neighborhood (order of 0.1 – 1 km) resolutions from coarser climate products. Developing these higher resolution (finer grid spacing) data needed for assessments typically covering multiyear climatology of past data and future projections is complex and computationally expensive for traditional physics-based dynamical models. In this study, we develop and adopt a novel approach for urban downscaling by generating a general-purpose operator using deep learning. This ‘DownScaleBench’ tool can aid the process of downscaling to any location. The DownScaleBench has been generalized for both in situ (ground- based) and satellite or reanalysis gridded data. The algorithm employs an iterative super-resolution convolutional neural network (Iterative SRCNN) over the city. We apply this for the development of a high-resolution gridded precipitation product (300 m) from a relatively coarse (10 km) satellite-based product (JAXA GsMAP). The high-resolution gridded precipitation datasets is compared against insitu observations for past heavy rain events over Austin, Texas, and shows marked improvement relative to the coarser datasets relative to cubic interpolation as a baseline. The creation of this Downscaling Bench has implications for generating high-resolution gridded urban meteorological datasets and aiding the planning process for climate-ready cities.  more » « less
Award ID(s):
2324744 1835739
PAR ID:
10489088
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Computational Urban Science
Volume:
3
Issue:
1
ISSN:
2730-6852
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Climate and weather data such as precipitation derived from Global Climate Models (GCMs) and satellite observations are essential for the global and local hydrological assessment. However, most climatic popular precipitation products (with spatial resolutions coarser than 10km) are too coarse for local impact studies and require “downscaling” to obtain higher resolutions. Traditional precipitation downscaling methods such as statistical and dynamic downscaling require an input of additional meteorological variables, and very few are applicable for downscaling hourly precipitation for higher spatial resolution. Based on dynamic dictionary learning, we propose a new downscaling method, PreciPatch, to address this challenge by producing spatially distributed higher resolution precipitation fields with only precipitation input from GCMs at hourly temporal resolution and a large geographical extent. Using aggregated Integrated Multi-satellitE Retrievals for GPM (IMERG) data, an experiment was conducted to evaluate the performance of PreciPatch, in comparison with bicubic interpolation using RainFARM—a stochastic downscaling method, and DeepSD—a Super-Resolution Convolutional Neural Network (SRCNN) based downscaling method. PreciPatch demonstrates better performance than other methods for downscaling short-duration precipitation events (used historical data from 2014 to 2017 as the training set to estimate high-resolution hourly events in 2018). 
    more » « less
  2. Abstract Long-term, spatial urban land projections that simultaneously offer global coverage and local-scale empirical accuracy are rare. Recently a set of such projections was produced using data-science-based simulations and the Shared Socioeconomic Pathways (SSPs). These projections update at decadal time intervals from 2000 to 2100 with a spatial resolution of 1/8 degree, while many socio-environmental studies customarily run their analysis and modelling at finer spatial resolutions, e.g. 1-km. Here we develop and validate an algorithm to downscale the 1/8-degree spatial urban land projections to the 1-km resolution. The algorithm uses an iterative process to allocate the decadal amount of urban land expansion originally projected for each 1/8-degree grid to its constituent 1-km grids. The results are a set of global maps showing urban land fractions at the 1-km resolution, updated at decadal intervals from 2000 to 2100, under five different urban land expansion scenarios consistent with the SSPs. The data can support studies of potential interactions between future urbanization and environmental changes across spatial and temporal scales. 
    more » « less
  3. Urbanization has accelerated dramatically across the world over the past decades. Urban influence on surface temperatures is now being considered as a correction term in climatological datasets. Although prior research has investigated urban influences on precipitation for specific cities or selected thunderstorm cases, a comprehensive examination of urban precipitation anomalies on a global scale remains limited. This research is a global analysis of urban precipitation anomalies for over one thousand cities worldwide. We find that more than 60% of the global cities and their downwind regions are receiving more precipitation than the surrounding rural areas. Moreover, the magnitude of these urban wet islands has nearly doubled in the past 20 y. Urban precipitation anomalies exhibit variations across different continents and climates, with cities in Africa, for example, exhibiting the largest urban annual and extreme precipitation anomalies. Cities are more prone to substantial urban precipitation anomalies under warm and humid climates compared to cold and dry climates. Cities with larger populations, pronounced urban heat island effects, and higher aerosol loads also show noticeable precipitation enhancements. This research maps global urban rainfall hotspots, establishing a foundation for the consideration of urban rainfall corrections in climatology datasets. This advancement holds promise for projecting extreme precipitation and fostering the development of more resilient cities in the future. 
    more » « less
  4. Abstract The Hawai‘i Climate Data Portal (HCDP) is designed to facilitate streamlined access to a wide variety of climate data and information for the State of Hawai‘i. Prior to the development of the HCDP, gridded climate products and point datasets were fragmented, outdated, not easily accessible, and not available in near–real time. To address these limitations, HCDP researchers developed the cyberinfrastructure necessary to 1) operationalize data acquisition and product production in a near-real-time environment and 2) make data and products easily accessible to a wide range of users. The HCDP hosts several high-resolution (250 m) gridded products including monthly rainfall and daily temperature (maximum, minimum, and mean), station data, and gridded future projections of rainfall and temperature. HCDP users can visualize both gridded and point data, create and download custom maps, and query station and gridded data for export with relative ease. The “virtual station” feature allows users to create a climate time series at any grid point. The primary objective of the HCDP is to promote sharing and access to data and information to streamline research activities, improve awareness, and promote the development of tools and resources that can help to build adaptive capacities. The HCDP products have the potential to serve a wide range of users including researchers, resource managers, city planners, engineers, teachers, students, civil society organizations, and the broader community. 
    more » « less
  5. Abstract ContextWildland-urban interface (WUI) areas are facing increased forest fire risks and extreme precipitation events due to climate change, which can lead to post-fire flood events. The city of Flagstaff in northern Arizona, USA experienced WUI forest thinning, fire, and record rainfall events, which collectively contributed to large floods and damages to the urban neighborhoods and city infrastructure. ObjectivesWe demonstrate multi-temporal, high resolution image applications from an unoccupied aerial vehicle (UAV) and terrestrial lidar in estimating landscape disturbance impacts within the WUI. Changes in forest vegetation and bare ground cover in WUIs are particularly challenging to estimate with coarse-resolution satellite images due to fine-scale landscape processes and changes that often result in mixed pixels. MethodsUsing Sentinel-2 satellite images, we document forest fire impacts and burn severity. Using 2016 and 2021 UAV multispectral images and Structure-from-Motion data, we estimate post-thinning changes in forest canopy cover, patch sizes, canopy height distribution, and bare ground cover. Using repeat lidar data within a smaller area of the watershed, we quantify geomorphic effects in the WUI associated with the fire and subsequent flooding. ResultsWe document that thinning significantly reduced forest canopy cover, patch size, tree density, and mean canopy height resulting in substantially reduced active crown fire risks in the future. However, the thinning equipment ignited a forest fire, which burned the WUI at varying severity at the top of the watershed that drains into the city. Moderate-high severity burns occurred within 3 km of downtown Flagstaff threatening the WUI neighborhoods and the city. The upstream burned area then experienced 100-year and 200–500-year rainfall events, which resulted in large runoff-driven floods and sedimentation in the city. ConclusionWe demonstrate that UAV high resolution images and photogrammetry combined with terrestrial lidar data provide detailed and accurate estimates of forest thinning and post-fire flood impacts, which could not be estimated from coarser-resolution satellite images. Communities around the world may need to prepare their WUIs for catastrophic fires and increase capacity to manage sediment-laden stormwater since both fires and extreme weather events are projected to increase. 
    more » « less