Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Complex industrial disasters illustrate the challenges of underdeveloped public warning systems. Unlike most natural disasters, quickly identifying hazardous materials and assessing their threats is crucial for developing protective action recommendations (PARs) that guide household response in industrial crises. The 2023 East Palestine, Ohio (USA) train derailment, chemical spill, and fires revealed that gaps in rapidly identifying hazardous materials, and the threats they present, can severely impact the public warning system. As the crisis unfolded, responding agencies left crucial questions unanswered, leaving community members uncertain about their safety, the extent of environmental contamination, and what protective actions to take. It is imperative to study the drivers of household protective actions in the absence of a developed warning system and well-established PARS. To achieve this, we conducted a community survey in Ohio, Pennsylvania, and West Virginia (n = 259) in response to the East Palestine crisis. We used multivariate logistic regressions to identify statistically significant explanatory factors that predict protective action response. Our findings reveal gaps in response, where challenges identifying and communicating hazards created environmental justice concerns. We provide policy recommendations to strengthen hazard identification and outline further work to include equity as a pillar of environmental disaster response.more » « lessFree, publicly-accessible full text available November 1, 2025
- 
            The East Palestine, Ohio train derailment released toxic vinyl chloride (VC) and butyl acrylate (BA), which entered the watershed. Streambed sediment, surface water, and private well water samples were collected 128 and 276 days postaccident to assess the natural attenuation potential of VC and BA by quantifying biodegradation biomarker genes and conducting microcosm treatability studies. qPCR detected the aerobic VC degradation biomarkers etnC in ∼40% and etnE in ∼27% of sediments collected in both sampling campaigns in abundances reaching 10e5 gene copies g−1. The 16S rRNA genes of organohalide-respiring Dehalococcoides and Dehalogenimonas were, respectively, detected in 50 and 64% of sediment samples collected 128 days postaccident and in 63 and 88% of sediment samples collected 276 days postaccident, in abundances reaching 10e7 cells g−1. Elevated detection frequencies of VC degradation biomarker genes were measured immediately downstream of the accident site (i.e., Sulphur Run). Aerobic VC degradation occurred in all sediment microcosms and coincided with increases of etnC/etnE genes and Mycobacterium, a genus comprising aerobic VC degraders. The conversion of VC to ethene and an increased abundance of VC reductive dechlorination biomarker genes were observed in microcosms established with sediments collected from Sulphur Run. All anoxic microcosms rapidly degraded BA to innocuous products with intermediate formation of n- butanol and acrylate. The results indicate that microbiomes in the East Palestine watershed have natural attenuation capacity for VC and BA. Recommendations are made to improve first-response actions in future contaminant release accidents of this magnitude.more » « less
- 
            The increasing prevalence of hazardous chemical incidents in the United States necessitates the implementation of analytically robust, rapid, and reliable screening techniques for toxicant mixture analysis to understand short- and long-term health impacts of environmental exposures. A recent chemical disaster in East Palestine, Ohio has underscored the importance of thorough contamination assessment. On February 03, 2023, a Norfolk Southern train derailment prompted a chemical spill and fires. An open burn involving over 100,000 gal of vinyl chloride was conducted three days later. Hazardous compounds were released into air, water, and soil. To provide time-sensitive exposure data for emergency response, this study outlines a novel methodology for rapid characterization of chemical contamination of environmental media to support disaster response efforts. A controlled static headspace sampling system, in conjunction with a high-resolution proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS), was developed to characterize volatile organic compounds (VOCs) in surface water samples collected near the East Palestine train derailment site. Spatial variations were observed in the chemical composition of surface water samples collected at different locations. Hydrocarbons were found to be the most abundant chemical group of all surface water samples, contributing 50 % to 97 % to the total headspace VOC mass. Compounds commonly detected in surface water samples, including benzene, styrene, xylene, and methyl tert-butyl ether (MTBE) were also observed in most surface water samples, with aqueous concentrations typically at ng/L levels. This study demonstrated the potential of the proposed methodology to be applied for rapid field screening of volatile chemicals in water samples in order to enable fast emergency response to chemical disasters and environmental hazards.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
