skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2327184

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Cardiovascular disease continues to be the leading cause of death in the United States. A major contributing factor is cardiac arrhythmia, which results from irregular electrical activity in the heart. On a tissue level, cardiac conduction involves the spread of action potentials (AP) across the heart, enabling coordinated contraction of the myocardium. On a cellular level, the transmission of signals between cells is facilitated by low-resistance pathways formed by gap junctions (GJs). Recent experimental studies have sparked discussion on whether GJs play a dominant role in cell communication. Interestingly, research has revealed that GJ knockout mice can still demonstrate signal propagation in the heart, albeit more slowly and discontinuously, indicating the presence of an alternative mechanism for cardiac conduction. Unlike GJ-mediated propagation, ephaptic coupling (EpC) has emerged as a distinct form of electrical transmission, characterized by contactless electrochemical signaling across the narrow intercalated discs (IDs) between cardiomyocytes. Advancements in cardiac research have highlighted the crucial role of EpC in restoring conduction by increasing conduction velocity (CV), reducing conduction block (CB), and terminating reentry arrhythmias, particularly when GJs are impaired. However, most EpC studies are either numerical or experimental, while analytical studies on ephaptic conduction–an equally important aspect of understanding EpC–remain extremely limited. In this paper, we applied asymptotic theory to calculate the CV in the presence of weak EpC. To achieve this, we developed both continuous and discrete models to describe ephaptic conduction along a strand of cells. Ionic dynamics were modeled using the piecewise linear and cubic functions. The resulting system represents a bistable system with weak EpC. We calculated an expression for CV in the presence of weak EpC for both models, and validated our analytical results with numerical simulations. Additionally, we showed that under weak EpC, CV can increase if the distribution of INa is more prominent on the end membrane. 
    more » « less
  2. Free, publicly-accessible full text available February 1, 2027
  3. Free, publicly-accessible full text available December 1, 2026
  4. Circadian clocks regulate the immune system, rendering humans more susceptible to infections at certain times of the day. Circadian modulation of SARS-CoV-2 infection has not yet been clearly established, nonetheless the circadian control of other respiratory viruses such as influenza A makes apparent the need to study the interaction between circadian rhythms and COVID-19 disease progression. We incorporated circadian oscillations into a mechanistic model of SARS-CoV-2 dynamics and immune response fit to viral load data from COVID-19 patients. The model predicts that circadian variation of parameters associated with the innate immune response and viral death rate lead to faster clearance of the virus, whereas circadian variation of parameters representing the susceptible cell infection rate, the viral production rate, and the adaptive immune response lead to slower clearance of the virus. We then used a model of remdesivir to simulate antiviral therapy. Our model simulations predict that the effectiveness of the treatment depends on the time of day the drug is administered. This prediction is conditional on the plausible, but entirely hypothetical, circadian interactions added to the model. Based on our proof-of-concept modeling results, we advocate for experimental and clinical studies to assess the impact that dosing time of day may have on the efficacy and toxicity of current COVID-19 antiviral drugs. 
    more » « less
  5. Free, publicly-accessible full text available September 1, 2026
  6. Loppini, Alessandro (Ed.)
    Cardiac myocytes synchronize through electrical signaling to contract heart muscles, facilitated by gap junctions (GJs) located in the intercalated disc (ID). GJs provide low-resistance pathways for electrical impulse propagation between myocytes, considered the primary mechanism for electrical communication in the heart. However, research indicates that conduction can persist without GJs. Ephaptic coupling (EpC), which depends on electrical fields in the narrow ID between adjacent myocytes, offers an alternative mechanism for cardiac conduction when GJs are impaired. Research suggests that EpC can enhance conduction velocity (CV) and reduce the likelihood of conduction block (CB), particularly when GJs are impaired, demonstrating the anti-arrhythmic potential of EpC. Reduced GJ communication increases the susceptibility of heart to arrhythmias due to ectopic or triggered activity, highlighting the pro-arrhythmic effect of GJ uncoupling. However, the interplay between GJs and EpC, and their roles in the initiation, dynamics, and termination of arrhythmias, remain unclear. Reentry, characterized by a loop of electrical activity, is a common mechanism underlying arrhythmogenesis in the heart. This study aims to explore the interplay between EpC and GJs on reentry initiation and its underlying dynamics. Specifically, we employed a two-dimensional (2D) discrete bidomain model that integrates EpC to simulate ephaptic conduction during reentry. We quantitatively assessed the outcomes of reentry initiation and the resulting dynamics across different levels of EpC, GJs, and initial perturbations. The results show that sufficiently strong EpC (i.e., sufficiently narrow clefts) tends to suppress reentry initiation, resulting in absent or non-sustained reentrant activity, while also introducing transient instability and heterogeneity into the cardiac dynamics. In contrast, relatively weak EpC (wide clefts) support sustained reentry with a stable rotor. Furthermore, we found that sufficiently strong EpC can lower the maximal dominant frequency observed during reentrant activity. Overall, this suggests that strong EpC exerts an anti-arrhythmic effect. 
    more » « less
    Free, publicly-accessible full text available August 19, 2026
  7. Circadian clocks regulate many aspects of human physiology, including cardiovascular function and drug metabolism. Administering drugs at optimal times of the day may enhance effectiveness and reduce side effects. Certain cardiac antiarrhythmic drugs have been withdrawn from the market due to unexpected proarrhythmic effects such as fatal Torsade de Pointes (TdP) ventricular tachycardia. The Comprehensive in vitro Proarrhythmia Assay (CiPA) is a recent global initiative to create guidelines for the assessment of drug-induced arrhythmias that recommends a central role for computational modeling of ion channels andin silicoevaluation of compounds for TdP risk. We simulated circadian regulation of cardiac excitability and explored how dosing time of day affects TdP risk for 11 drugs previously classified into risk categories by CiPA. The model predicts that a high-risk drug taken at the most optimal time of day may actually be safer than a low-risk drug taken at the least optimal time of day. Based on these proof-of-concept results, we advocate for the incorporation of circadian clock modeling into the CiPA paradigm for assessing drug-induced TdP risk. Since cardiotoxicity is the leading cause of drug discontinuation, modeling cardiac-related chronopharmacology has significant potential to improve therapeutic outcomes. 
    more » « less