Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The recurrence of epidemic waves has been a hallmark of infectious disease outbreaks. Repeated surges in infections pose significant challenges to public health systems, yet the mechanisms that drive these waves remain insufficiently understood. Most prior models attribute epidemic waves to exogenous factors, such as transmission seasonality, viral mutations, or implementation of public health interventions. We show that epidemic waves can emerge autonomously from the feedback loop between infection dynamics and human behavior. Our results are based on a behavioral framework in which individuals continuously adjust their level of risk mitigation subject to their perceived risk of infection, which depends on information availability and disease severity. We show that delayed behavioral responses alone can lead to the emergence of multiple epidemic waves. The magnitude and frequency of these waves depend on the interplay between behavioral factors (delay, severity, and sensitivity of responses) and disease factors (transmission and recovery rates). Notably, if the response is either too prompt or excessively delayed, multiple waves cannot emerge. Our results further align with previous observations that adaptive human behavior can produce nonmonotonic final epidemic sizes, shaped by the trade-offs between various biological and behavioral factors—namely, risk sensitivity, response stringency, and disease generation time. Interestingly, we found that the minimal final epidemic size occurs on regimes that exhibit a few damped oscillations. Altogether, our results emphasize the importance of integrating social and operational factors into infectious disease models, in order to capture the joint evolution of adaptive behavioral responses and epidemic dynamics.more » « less
- 
            Ndiribe, Charlotte (Ed.)Population growth models typically incorporate attributes observable at the population scale, often overlooking the trade-off between individual-level reproductive and behavioral traits and their influence on population size. Individuals’ survival and reproductive abilities are expected to dynamically evolve depending on the population size, which is affected by the aggregation of individual decisions. Reconciling individual-level incentives with population-level dynamics requires an integrative framework that explicitly addresses the intertwined relationships between population growth and individual decision-making processes. We formulate a multiscale modeling framework that integrates the logistic population growth model with an optimal foraging model to study the interplay between individual-level behavioral incentives and population growth dynamics. Specifically, we explicitly model individuals’ decision-making process, which shapes their reproductive fitness and, ultimately, influences population growth. Moreover, we incorporate the concept of resource limitations from the logistic growth model to account for dynamic incentives that depend on population size. Our results yield insights into the multiscale processes, such as the selection pressure of behavioral choices and the cost-benefit of social activities that influence population robustness beyond mere size and aggregated reproductive traits. We found that populations exhibiting similar limiting sizes may undergo significantly different transient dynamics. This variation may be induced by environments imposing distinct behavioral cost-benefit trade-offs that require individuals to exert different levels of foraging effort to maintain reproductive viability.more » « lessFree, publicly-accessible full text available June 26, 2026
- 
            Risk-driven behaviour provides a feedback mechanism through which individuals both shape and are collectively affected by an epidemic. We introduce a general and flexible compartmental model to study the effect of heterogeneity in the population with regard to risk tolerance. The interplay between behaviour and epidemiology leads to a rich set of possible epidemic dynamics. Depending on the behavioural composition of the population, we find that increasing heterogeneity in risk tolerance can either increase or decrease the epidemic size. We find that multiple waves of infection can arise due to the interplay between transmission and behaviour, even without the replenishment of susceptibles. We find that increasing protective mechanisms such as the effectiveness of interventions, the fraction of risk-averse people in the population and the duration of intervention usage reduce the epidemic overshoot. When the protection is pushed past a critical threshold, the epidemic dynamics enter an underdamped regime where the epidemic size exactly equals the herd immunity threshold and overshoot is eliminated. Finally, we can find regimes where epidemic size does not monotonically decrease with a population that becomes increasingly risk-averse.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            Free, publicly-accessible full text available February 1, 2026
- 
            Free, publicly-accessible full text available February 1, 2026
- 
            Free, publicly-accessible full text available December 15, 2025
- 
            The multiple immunity responses exhibited in the population and co-circulating variants documented during pandemics show a high potential to generate diverse long-term epidemiological scenarios. Transmission variability, immune uncertainties and human behaviour are crucial features for the predictability and implementation of effective mitigation strategies. Nonetheless, the effects of individual health incentives on disease dynamics are not well understood. We use a behavioural-immuno-epidemiological model to study the joint evolution of human behaviour and epidemic dynamics for different immunity scenarios. Our results reveal a trade-off between the individuals’ immunity levels and the behavioural responses produced. We find that adaptive human behaviour can avoid dynamical resonance by avoiding large outbreaks, producing subsequent uniform outbreaks. Our forward-looking behaviour model shows an optimal planning horizon that minimizes the epidemic burden by balancing the individual risk–benefit trade-off. We find that adaptive human behaviour can compensate for differential immunity levels, equalizing the epidemic dynamics for scenarios with diverse underlying immunity landscapes. Our model can adequately capture complex empirical behavioural dynamics observed during pandemics. We tested our model for different US states during the COVID-19 pandemic. Finally, we explored extensions of our modelling framework that incorporate the effects of lockdowns, the emergence of a novel variant, prosocial attitudes and pandemic fatigue.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
