Abstract Non-pharmaceutical interventions (NPIs) constitute the front-line responses against epidemics. Yet, the interdependence of control measures and individual microeconomics, beliefs, perceptions and health incentives, is not well understood. Epidemics constitute complex adaptive systems where individual behavioral decisions drive and are driven by, among other things, the risk of infection. To study the impact of heterogeneous behavioral responses on the epidemic burden, we formulate a two risk-groups mathematical model that incorporates individual behavioral decisions driven by risk perceptions. Our results show a trade-off between the efforts to avoid infection by the risk-evader population, and the proportion of risk-taker individuals with relaxed infection risk perceptions. We show that, in a structured population, privately computed optimal behavioral responses may lead to an increase in the final size of the epidemic, when compared to the homogeneous behavior scenario. Moreover, we find that uncertain information on the individuals’ true health state may lead to worse epidemic outcomes, ultimately depending on the population’s risk-group composition. Finally, we find there is a set of specific optimal planning horizons minimizing the final epidemic size, which depend on the population structure.
more »
« less
Adaptive human behavior and delays in information availability autonomously modulate epidemic waves
Abstract The recurrence of epidemic waves has been a hallmark of infectious disease outbreaks. Repeated surges in infections pose significant challenges to public health systems, yet the mechanisms that drive these waves remain insufficiently understood. Most prior models attribute epidemic waves to exogenous factors, such as transmission seasonality, viral mutations, or implementation of public health interventions. We show that epidemic waves can emerge autonomously from the feedback loop between infection dynamics and human behavior. Our results are based on a behavioral framework in which individuals continuously adjust their level of risk mitigation subject to their perceived risk of infection, which depends on information availability and disease severity. We show that delayed behavioral responses alone can lead to the emergence of multiple epidemic waves. The magnitude and frequency of these waves depend on the interplay between behavioral factors (delay, severity, and sensitivity of responses) and disease factors (transmission and recovery rates). Notably, if the response is either too prompt or excessively delayed, multiple waves cannot emerge. Our results further align with previous observations that adaptive human behavior can produce nonmonotonic final epidemic sizes, shaped by the trade-offs between various biological and behavioral factors—namely, risk sensitivity, response stringency, and disease generation time. Interestingly, we found that the minimal final epidemic size occurs on regimes that exhibit a few damped oscillations. Altogether, our results emphasize the importance of integrating social and operational factors into infectious disease models, in order to capture the joint evolution of adaptive behavioral responses and epidemic dynamics.
more »
« less
- PAR ID:
- 10593802
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- PNAS Nexus
- Volume:
- 4
- Issue:
- 5
- ISSN:
- 2752-6542
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The transmission dynamics of infectious diseases and human responses are intertwined, forming complex feedback loops. However, many epidemic models fail to endogenously represent human behavior change. In this study, we introduce a novel behavioral epidemic model that incorporates various behavioral phenomena into SEIR models, including risk-response dynamics, shifts in containment policies, adherence fatigue, and societal learning, alongside disease transmission dynamics. By testing our model against data from 8 countries, where extensive behavioral data were available, we simultaneously replicate death rates, mobility trends, fatigue levels, and policy changes, both in-sample and out-of-sample. Our model offers a comprehensive depiction of changes in multiple behavioral measures along with the spread of the disease. We assess the explanatory power of each model mechanism in capturing data variability. Our findings demonstrate that the comprehensive model that includes all mechanisms provides the most insightful perspective for understanding the influence of human behavior during pandemics.more » « less
-
Abstract During infectious disease outbreaks, individuals may adopt protective measures like vaccination and physical distancing in response to awareness of disease burden. Prior work showed how feedbacks between epidemic intensity and awareness-based behaviour shape disease dynamics. These models often overlook social divisions, where population subgroups may be disproportionately impacted by a disease and more responsive to the effects of disease within their group. We develop a compartmental model of disease transmission and awareness-based protective behaviour in a population split into two groups to explore the impacts of awareness separation (relatively greater in- vs. out-group awareness of epidemic severity) and mixing separation (relatively greater in- vs. out-group contact rates). Using simulations, we show that groups that are more separated in awareness have smaller differences in mortality. Fatigue (i.e. abandonment of protective measures over time) can drive additional infection waves that can even exceed the size of the initial wave, particularly if uniform awareness drives early protection in one group, leaving that group largely susceptible to future infection. Counterintuitively, vaccine or infection-acquired immunity that is more protective against transmission and mortality may indirectly lead to more infections by reducing perceived risk of infection and therefore vaccine uptake. Awareness-based protective behaviour, including awareness separation, can fundamentally alter disease dynamics. Social media summary: Depending on group division, behaviour based on perceived risk can change epidemic dynamics & produce large later waves.more » « less
-
Nonpharmaceutical interventions (NPIs) such as mask wearing can be effective in mitigating the spread of infectious diseases. Therefore, understanding the behavioral dynamics of NPIs is critical for characterizing the dynamics of disease spread. Nevertheless, standard infection models tend to focus only on disease states, overlooking the dynamics of “beneficial contagions,” e.g., compliance with NPIs. In this work, we investigate the concurrent spread of disease and mask-wearing behavior over multiplex networks. Our proposed framework captures both the competing and complementary relationships between the dueling contagion processes. Further, the model accounts for various behavioral mechanisms that influence mask wearing, such as peer pressure and fear of infection. Our results reveal that under the coupled disease–behavior dynamics, the attack rate of a disease—as a function of transition probability—exhibits a critical transition. Specifically, as the transmission probability exceeds a critical threshold, the attack rate decreases abruptly due to sustained mask-wearing responses. We empirically explore the causes of the critical transition and demonstrate the robustness of the observed phenomena. Our results highlight that without proper enforcement of NPIs, reductions in the disease transmission probability via other interventions may not be sufficient to reduce the final epidemic size.more » « less
-
Abstract Infections produced by non-symptomatic (pre-symptomatic and asymptomatic) individuals have been identified as major drivers of COVID-19 transmission. Non-symptomatic individuals, unaware of the infection risk they pose to others, may perceive themselves—and be perceived by others—as not presenting a risk of infection. Yet, many epidemiological models currently in use do not include a behavioral component, and do not address the potential consequences of risk misperception. To study the impact of behavioral adaptations to the perceived infection risk, we use a mathematical model that incorporates the behavioral decisions of individuals, based on a projection of the system’s future state over a finite planning horizon. We found that individuals’ risk misperception in the presence of non-symptomatic individuals may increase or reduce the final epidemic size. Moreover, under behavioral response the impact of non-symptomatic infections is modulated by symptomatic individuals’ behavior. Finally, we found that there is an optimal planning horizon that minimizes the final epidemic size.more » « less
An official website of the United States government
