skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2328051

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Tasks of daily living are often sporadic, highly variable, and asymmetric. Analyzing these real-world non-cyclic activities is integral for expanding the applicability of exoskeletons, protheses, wearable sensing, and activity classification to real life, and could provide new insights into human biomechanics. Yet, currently available biomechanics datasets focus on either highly consistent, continuous, and symmetric activities, such as walking and running, or only a single specific non-cyclic task. To capture a more holistic picture of lower limb movements in everyday life, we collected data from 12 participants performing 20 non-cyclic activities (e.g. sit-to-stand, jumping, squatting, lunging, cutting) as well as 11 cyclic activities (e.g. walking, running) while kinematics (motion capture and IMUs), kinetics (force plates), and electromyography (EMG) were collected. This dataset provides normative biomechanics for a highly diverse range of activities and common tasks from a consistent set of participants and sensors. 
    more » « less
  2. Free, publicly-accessible full text available June 1, 2026
  3. Objective: Real-time measurement of biological joint moment could enhance clinical assessments and generalize exoskeleton control. Accessing joint moments outside clinical and laboratory settings requires harnessing non-invasive wearable sensor data for indirect estimation. Previous approaches have been primarily validated during cyclic tasks, such as walking, but these methods are likely limited when translating to non-cyclic tasks where the mapping from kinematics to moments is not unique. Methods: We trained deep learning models to estimate hip and knee joint moments from kinematic sensors, electromyography (EMG), and simulated pressure insoles from a dataset including 10 cyclic and 18 non-cyclic activities. We assessed estimation error on combinations of sensor modalities during both activity types. Results: Compared to the kinematics-only baseline, adding EMG reduced RMSE by 16.9% at the hip and 30.4% at the knee (p<0.05) and adding insoles reduced RMSE by 21.7% at the hip and 33.9% at the knee (p<0.05). Adding both modalities reduced RMSE by 32.5% at the hip and 41.2% at the knee (p<0.05) which was significantly higher than either modality individually (p<0.05). All sensor additions improved model performance on non-cyclic tasks more than cyclic tasks (p<0.05). Conclusion: These results demonstrate that adding kinetic sensor information through EMG or insoles improves joint moment estimation both individually and jointly. These additional modalities are most important during non-cyclic tasks, tasks that reflect the variable and sporadic nature of the real-world. Significance: Improved joint moment estimation and task generalization is pivotal to developing wearable robotic systems capable of enhancing mobility in everyday life. 
    more » « less