Abstract Human ambulation is typically characterized during steady-state isolated tasks (e.g., walking, running, stair ambulation). However, general human locomotion comprises continuous adaptation to the varied terrains encountered during activities of daily life. To fill an important gap in knowledge that may lead to improved therapeutic and device interventions for mobility-impaired individuals, it is vital to identify how the mechanics of individuals change as they transition between different ambulatory tasks, and as they encounter terrains of differing severity. In this work, we study lower-limb joint kinematics during the transitions between level walking and stair ascent and descent over a range of stair inclination angles. Using statistical parametric mapping, we identify where and when the kinematics of transitions are unique from the adjacent steady-state tasks. Results show unique transition kinematics primarily in the swing phase, which are sensitive to stair inclination. We also train Gaussian process regression models for each joint to predict joint angles given the gait phase, stair inclination, and ambulation context (transition type, ascent/descent), demonstrating a mathematical modeling approach that successfully incorporates terrain transitions and severity. The results of this work further our understanding of transitory human biomechanics and motivate the incorporation of transition-specific control models into mobility-assistive technology.
more »
« less
A human lower-limb biomechanics and wearable sensors dataset during cyclic and non-cyclic activities
Abstract Tasks of daily living are often sporadic, highly variable, and asymmetric. Analyzing these real-world non-cyclic activities is integral for expanding the applicability of exoskeletons, protheses, wearable sensing, and activity classification to real life, and could provide new insights into human biomechanics. Yet, currently available biomechanics datasets focus on either highly consistent, continuous, and symmetric activities, such as walking and running, or only a single specific non-cyclic task. To capture a more holistic picture of lower limb movements in everyday life, we collected data from 12 participants performing 20 non-cyclic activities (e.g. sit-to-stand, jumping, squatting, lunging, cutting) as well as 11 cyclic activities (e.g. walking, running) while kinematics (motion capture and IMUs), kinetics (force plates), and electromyography (EMG) were collected. This dataset provides normative biomechanics for a highly diverse range of activities and common tasks from a consistent set of participants and sensors.
more »
« less
- PAR ID:
- 10481417
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Data
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2052-4463
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Objective: Real-time measurement of biological joint moment could enhance clinical assessments and generalize exoskeleton control. Accessing joint moments outside clinical and laboratory settings requires harnessing non-invasive wearable sensor data for indirect estimation. Previous approaches have been primarily validated during cyclic tasks, such as walking, but these methods are likely limited when translating to non-cyclic tasks where the mapping from kinematics to moments is not unique. Methods: We trained deep learning models to estimate hip and knee joint moments from kinematic sensors, electromyography (EMG), and simulated pressure insoles from a dataset including 10 cyclic and 18 non-cyclic activities. We assessed estimation error on combinations of sensor modalities during both activity types. Results: Compared to the kinematics-only baseline, adding EMG reduced RMSE by 16.9% at the hip and 30.4% at the knee (p<0.05) and adding insoles reduced RMSE by 21.7% at the hip and 33.9% at the knee (p<0.05). Adding both modalities reduced RMSE by 32.5% at the hip and 41.2% at the knee (p<0.05) which was significantly higher than either modality individually (p<0.05). All sensor additions improved model performance on non-cyclic tasks more than cyclic tasks (p<0.05). Conclusion: These results demonstrate that adding kinetic sensor information through EMG or insoles improves joint moment estimation both individually and jointly. These additional modalities are most important during non-cyclic tasks, tasks that reflect the variable and sporadic nature of the real-world. Significance: Improved joint moment estimation and task generalization is pivotal to developing wearable robotic systems capable of enhancing mobility in everyday life.more » « less
-
Abstract Physical activity can benefit both physical and mental well-being. Different forms of exercise (e.g., aerobic versus anaerobic; running versus walking, swimming, or yoga; high-intensity interval training versus endurance workouts; etc.) impact physical fitness in different ways. For example, running may substantially impact leg and heart strength but only moderately impact arm strength. We hypothesized that the mental benefits of physical activity might be similarly differentiated. We focused specifically on how different intensities of physical activity might relate to different aspects of memory and mental health. To test our hypothesis, we collected (in aggregate) roughly a century’s worth of fitness data. We then asked participants to fill out surveys asking them to self-report on different aspects of their mental health. We also asked participants to engage in a battery of memory tasks that tested their short and long term episodic, semantic, and spatial memory performance. We found that participants with similar physical activity habits and fitness profiles tended to also exhibit similar mental health and task performance profiles. These effects were task-specific in that different physical activity patterns or fitness characteristics varied with different aspects of memory, on different tasks. Taken together, these findings provide foundational work for designing physical activity interventions that target specific components of cognitive performance and mental health by leveraging low-cost fitness tracking devices.more » « less
-
Translating fine-grained activity detection (e.g., phone ring, talking interspersed with silence and walking) into semantically meaningful and richer contextual information (e.g., on a phone call for 20 minutes while exercising) is essential towards enabling a range of healthcare and human-computer interaction applications. Prior work has proposed building ontologies or temporal analysis of activity patterns with limited success in capturing complex real-world context patterns. We present TAO, a hybrid system that leverages OWL-based ontologies and temporal clustering approaches to detect high-level contexts from human activities. TAO can characterize sequential activities that happen one after the other and activities that are interleaved or occur in parallel to detect a richer set of contexts more accurately than prior work. We evaluate TAO on real-world activity datasets (Casas and Extrasensory) and show that our system achieves, on average, 87% and 80% accuracy for context detection, respectively. We deploy and evaluate TAO in a real-world setting with eight participants using our system for three hours each, demonstrating TAO's ability to capture semantically meaningful contexts in the real world. Finally, to showcase the usefulness of contexts, we prototype wellness applications that assess productivity and stress and show that the wellness metrics calculated using contexts provided by TAO are much closer to the ground truth (on average within 1.1%), as compared to the baseline approach (on average within 30%).more » « less
-
Lower-limb exoskeletons have the potential to transform the way we move1,2,3,4,5,6,7,8,9,10,11,12,13,14, but current state-of-the-art controllers cannot accommodate the rich set of possible human behaviours that range from cyclic and predictable to transitory and unstructured. We introduce a task-agnostic controller that assists the user on the basis of instantaneous estimates of lower-limb biological joint moments from a deep neural network. By estimating both hip and knee moments in-the-loop, our approach provided multi-joint, coordinated assistance through our autonomous, clothing-integrated exoskeleton. When deployed during 28 activities, spanning cyclic locomotion to unstructured tasks (for example, passive meandering and high-speed lateral cutting), the network accurately estimated hip and knee moments with an average R2 of 0.83 relative to ground truth. Further, our approach significantly outperformed a best-case task classifier-based method constructed from splines and impedance parameters. When tested on ten activities (including level walking, running, lifting a 25 lb (roughly 11 kg) weight and lunging), our controller significantly reduced user energetics (metabolic cost or lower-limb biological joint work depending on the task) relative to the zero torque condition, ranging from 5.3 to 19.7%, without any manual controller modifications among activities. Thus, this task-agnostic controller can enable exoskeletons to aid users across a broad spectrum of human activities, a necessity for real-world viability.more » « less
An official website of the United States government
