Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Recently, genomic approaches have helped to resolve phylogenetic questions in many groups of parasitic organisms, including lice (Phthiraptera). However, these approaches have still not been applied to one of the most diverse groups of lice, Amblycera. To fill this gap, we applied phylogenomic methods based on genome‐level exon sequence data to resolve the relationships within and among the families of Amblycera. Our phylogenomic trees support the monophyly of the families Ricinidae and Laemobothriidae. However, the families Trimenoponidae and Gyropidae are not monophyletic, indicating that they should be merged into a single family. The placement ofTrinotonis unstable with respect to Boopiidae and Menoponidae, and we suggest recognizing Trinotonidae as a separate family. At the genus level, the generaColpocephalum,Hohorstiella,MenacanthusandRicinuswere recovered as paraphyletic. Regarding generic complexes, the tree revealed theMenacanthuscomplex to be monophyletic, but theColpocephalumcomplex paraphyletic, including genera not traditionally placed in this group. Dating analysis suggests that the divergence among families of Amblycera occurred shortly after the Cretaceous–Paleogene boundary 66 Mya. Cophylogenetic analyses revealed many host‐switching events during the diversification of Amblycera, indicating that the evolutionary history of Amblycera does not tightly mirror that of its hosts. Ancestral host reconstructions revealed that the ancestral host of Amblycera was most likely a bird, with two host switching events to mammals. By combining phylogenomics, molecular dating and cophylogenetic analyses, we provide the first large‐scale picture of amblyceran evolution, which will serve as a basis for future studies of this group.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Abstract Genetic analyses of host‐specific parasites can elucidate the evolutionary histories and biological features of their hosts. Here, we used population‐genomic analyses of ectoparasitic seal lice (Echinophthirius horridus) to shed light on the postglacial history of seals in the Arctic Ocean and the Baltic Sea region. One key question was the enigmatic origin of relict landlocked ringed seal populations in lakes Saimaa and Ladoga in northern Europe. We found that that lice of four postglacially diverged subspecies of the ringed seal (Pusa hispida) and Baltic gray seal (Halichoerus grypus), like their hosts, form genetically differentiated entities. Using coalescent‐based demographic inference, we show that the sequence of divergences of the louse populations is consistent with the geological history of lake formation. In addition, local effective population sizes of the lice are generally proportional to the census sizes of their respective seal host populations. Genome‐based reconstructions of long‐term effective population sizes revealed clear differences among louse populations associated with gray versus ringed seals, with apparent links to Pleistocene and Holocene climatic variation as well as to the isolation histories of ringed seal subspecies. Interestingly, our analyses also revealed ancient gene flow between the lice of Baltic gray and ringed seals, suggesting that the distributions of Baltic seals overlapped to a greater extent in the past than is the case today. Taken together, our results demonstrate how genomic information from specialized parasites with higher mutation and substitution rates than their hosts can potentially illuminate finer scale population genetic patterns than similar data from their hosts.more » « less
-
Many parasitic insects, including lice, form close relationships with endosymbiotic bacteria that are crucial for their survival. In this study, we used genomic sequencing to investigate the distribution and evolutionary history of the bacterial genusSodalisacross a broad range of feather louse species spanning 140 genera. Phylogenomic analysis revealed significant diversity amongSodalislineages in feather lice and robust evidence for their independent and repeated acquisition by different louse clades throughout their radiation. Among the 1020 louse genomes analysed, at least 22% containedSodalis, distributed across 57 louse genera. Cophylogenetic analyses between theSodalisand feather louse phylogenies indicated considerable mismatch. This phylogenetic incongruence between lice andSodalis, along with the presence of distantly relatedSodalislineages in otherwise closely related louse species, strongly indicates repeated independent acquisition of this endosymbiont. Additionally, evidence of cospeciation among a few closely related louse species, coupled with frequent acquisition of these endosymbionts from free-living bacteria, further highlights the diverse evolutionary processes shapingSodalisendosymbiosis in feather lice.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Free, publicly-accessible full text available June 15, 2026
-
Sloan, Daniel (Ed.)While mitochondrial genome content and organization is quite diverse across all Eukaryotes, most bilaterian animal mitochondrial genomes (mitogenomes) exhibit highly conserved gene content and organisation, with genes typically encoded on a single circular chromosome. However, many species of parasitic lice (Insecta: Phthiraptera) are among the notable exceptions, having mitogenomes fragmented into multiple circular chromosomes. To better understand the process of mitogenome fragmentation, we conducted a large-scale genomic study of a major group of lice, Amblycera, with extensive taxon sampling. Analyses of the evolution of mitogenome structure across a phylogenomic tree of 90 samples from 53 genera revealed evidence for multiple independent origins of mitogenome fragmentation, some inferred to have occurred less than five million years ago. We leveraged these many independent origins of fragmentation to compare the rates of DNA substitution and gene rearrangement, specifically contrasting branches with fragmented and non-fragmented mitogenomes. We found that lineages with fragmented mitochondrial genomes had significantly higher rates of mitochondrial sequence evolution. In addition, lineages with fragmented mitochondrial genomes were more likely to have mitogenome gene rearrangements than those with single-chromosome mitochondrial genomes. By combining phylogenomics and mitochondrial genomics we provide a detailed portrait of mitogenome evolution across this group of insects with a remarkably unstable mitogenome structure, identifying processes of molecular evolution that are correlated with mitogenome fragmentation.more » « less
An official website of the United States government
