skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 1, 2026

Title: Independent and repeated acquisition of Sodalis endosymbiotic bacteria across the diversification of feather lice
Many parasitic insects, including lice, form close relationships with endosymbiotic bacteria that are crucial for their survival. In this study, we used genomic sequencing to investigate the distribution and evolutionary history of the bacterial genusSodalisacross a broad range of feather louse species spanning 140 genera. Phylogenomic analysis revealed significant diversity amongSodalislineages in feather lice and robust evidence for their independent and repeated acquisition by different louse clades throughout their radiation. Among the 1020 louse genomes analysed, at least 22% containedSodalis, distributed across 57 louse genera. Cophylogenetic analyses between theSodalisand feather louse phylogenies indicated considerable mismatch. This phylogenetic incongruence between lice andSodalis, along with the presence of distantly relatedSodalislineages in otherwise closely related louse species, strongly indicates repeated independent acquisition of this endosymbiont. Additionally, evidence of cospeciation among a few closely related louse species, coupled with frequent acquisition of these endosymbionts from free-living bacteria, further highlights the diverse evolutionary processes shapingSodalisendosymbiosis in feather lice.  more » « less
Award ID(s):
1925487 1926919 2328118
PAR ID:
10645504
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
The Royal Society Publishing
Date Published:
Journal Name:
Royal Society Open Science
Volume:
12
Issue:
9
ISSN:
2054-5703
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Avian feather lice (Phthiraptera: Ischnocera) have undergone morphological diversification into ecomorphs based on how they escape host preening defences. Parrot lice are one prominent example of this phenomenon, with wing, body, or head louse ecomorphs occurring on various groups of parrots. Currently defined genera of parrot lice typically correspond to this ecomorphological variation. Here we explore the phylogenetic relationships among parrot feather lice by sequencing whole genomes and assembling a target set of 2395 nuclear protein coding genes. Phylogenetic trees based on concatenated and coalescent analyses of these data reveal highly supported trees with strong agreement between methods of analysis. These trees reveal that parrot feather lice fall into two separate clades that form a grade with respect to the Brueelia-complex. All parrot louse genera sampled by more than one species were recovered as monophyletic. The evolutionary relationships among these lice showed evidence of strong biogeographic signal, which may also be related to the relationships among their hosts. 
    more » « less
  2. Organisms that have repeatedly evolved similar morphologies owing to the same selective pressures provide excellent cases in which to examine specific morphological changes and their relevance to the ecology and evolution of taxa. Hosts of permanent parasites act as an independent evolutionary experiment, as parasites on these hosts are thought to be undergoing similar selective pressures. Parasitic feather lice have repeatedly diversified into convergent ecomorphs in different microhabitats on their avian hosts. We quantified specific morphological characters to determine (i) which traits are associated with each ecomorph, (ii) the quantitative differences between these ecomorphs, and (iii) if there is evidence of displacement among co-occurring lice as might be expected under louse–louse competition on the host. We used nano-computed tomography scan data of 89 specimens, belonging to four repeatedly evolved ecomorphs, to examine their mandibular muscle volume, limb length and three-dimensional head shape data. Here, we find evidence that lice repeatedly evolve similar morphologies as a mechanism to escape host defences, but also diverge into different ecomorphs related to the way they escape these defences. Lice that co-occur with other genera on a host exhibit greater morphological divergence, indicating a potential role of competition in evolutionary divergence. 
    more » « less
  3. Abstract Inferring evolutionary relationships among recently diverged lineages is necessary to understand how isolating barriers produce independent lineages. Here, we investigate the phylogenetic relationships between three incompletely isolated and closely related mushroom‐feedingDrosophilaspecies. These species form theDrosophila subquinariaspecies complex and consist of one Eurasian species (D. transversa) and two widespread North American species (D. subquinariaandD. recens) that are sympatric in central Canada. Although patterns of pre‐ and post‐mating isolation among these species are well characterized, previous work on their phylogenetic relationships is limited and conflicting. In this study, we generated a multi‐locus data set of 29 loci from across the genome sequenced in a population sample from each species, and then, we inferred species relationships and patterns of introgression. We find strong statistical support thatD. subquinariais paraphyletic, showing that samples from the geographic region sympatric withD. recensare most closely related toD. recens, whereas samples from the geographic region allopatric withD. recensare most closely related toD. transversa. We present several lines of evidence that both incomplete lineage sorting and gene flow are causing phylogenetic discordance. We suggest that ongoing gene flow primarily fromD. recensintoD. subquinariain the sympatric part of their ranges causes phylogenetic uncertainty in the evolutionary history of these species. Our results highlight how population genetic data can be used to disentangle the sources of phylogenetic discordance among closely related species. 
    more » « less
  4. null (Ed.)
    Most animals have a conserved mitochondrial genome structure composed of a single chromosome. However, some organisms have their mitochondrial genes separated on several smaller circular or linear chromosomes. Highly fragmented circular chromosomes (“minicircles”) are especially prevalent in parasitic lice (Insecta: Phthiraptera), with 16 species known to have between nine and 20 mitochondrial minicircles per genome. All of these species belong to the same clade (mammalian lice), suggesting a single origin of drastic fragmentation. Nevertheless, other work indicates a lesser degree of fragmentation (2–3 chromosomes/genome) is present in some avian feather lice (Ischnocera: Philopteridae). In this study, we tested for minicircles in four species of the feather louse genus Columbicola (Philopteridae). Using whole genome shotgun sequence data, we applied three different bioinformatic approaches for assembling the Columbicola mitochondrial genome. We further confirmed these approaches by assembling the mitochondrial genome of Pediculus humanus from shotgun sequencing reads, a species known to have minicircles. Columbicola spp. genomes are highly fragmented into 15–17 minicircles between ∼1,100 and ∼3,100 bp in length, with 1–4 genes per minicircle. Subsequent annotation of the minicircles indicated that tRNA arrangements of minicircles varied substantially between species. These mitochondrial minicircles for species of Columbicola represent the first feather lice (Philopteridae) for which minicircles have been found in a full mitochondrial genome assembly. Combined with recent phylogenetic studies of parasitic lice, our results provide strong evidence that highly fragmented mitochondrial genomes, which are otherwise rare across the Tree of Life, evolved multiple times within parasitic lice. 
    more » « less
  5. Abstract Background Feather feeding lice are abundant and diverse ectoparasites that complete their entire life cycle on an avian host. The principal or sole source of nutrition for these lice is feathers. Feathers appear to lack four amino acids that the lice would require to complete development and reproduce. Several insect groups have acquired heritable and intracellular bacteria that can synthesize metabolites absent in an insect’s diet, allowing insects to feed exclusively on nutrient-poor resources. Multiple species of feather feeding lice have been shown to harbor heritable and intracellular bacteria. We expected that these bacteria augment the louse’s diet with amino acids and facilitated the evolution of these diverse and specialized parasites. Heritable symbionts of insects often have small genomes that contain a minimal set of genes needed to maintain essential cell functions and synthesize metabolites absent in the host insect’s diet. Therefore, we expected the genome of a bacterial endosymbiont in feather lice would be small, but encode pathways for biosynthesis of amino acids. Results We sequenced the genome of a bacterial symbiont from a feather feeding louse ( Columbicola wolffhuegeli ) that parasitizes the Pied Imperial Pigeon ( Ducula bicolor ) and used its genome to predict metabolism of amino acids based on the presence or absence of genes. We found that this bacterial symbiont has a small genome, similar to the genomes of heritable symbionts described in other insect groups. However, we failed to identify many of the genes that we expected would support metabolism of amino acids in the symbiont genome. We also evaluated other gene pathways and features of the highly reduced genome of this symbiotic bacterium. Conclusions Based on the data collected in this study, it does not appear that this bacterial symbiont can synthesize amino acids needed to complement the diet of a feather feeding louse. Our results raise additional questions about the biology of feather chewing lice and the roles of symbiotic bacteria in evolution of diverse avian parasites. 
    more » « less